#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2018-2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
from operator import itemgetter
import re
import posixpath
from h5py import File, Dataset, Group
try:
from silx.io import is_dataset, is_group
except:
def is_dataset(something):
return False
def is_group(something):
return False
import logging
_logger = logging.getLogger(__name__)
#sorting method
def h5py_sorting(object_list):
sorting_list = ['start_time', 'end_time', 'name']
n = len(object_list)
if n < 2:
return object_list
# we have received items, not values
# perform a first sort based on received names
# this solves a problem with Eiger data where all the
# external data have the same posixName. Without this sorting
# they arrive "unsorted"
object_list.sort()
try:
posixNames = [item[1].name for item in object_list]
except AttributeError:
# Typical of broken external links
_logger.debug("HDF5Widget: Cannot get posixNames")
return object_list
# This implementation only sorts entries
if posixpath.dirname(posixNames[0]) != "/":
return object_list
sorting_key = None
if hasattr(object_list[0][1], "items"):
for key in sorting_list:
if key in [x[0] for x in object_list[0][1].items()]:
sorting_key = key
break
if sorting_key is None:
if 'name' in sorting_list:
sorting_key = 'name'
else:
return object_list
try:
if sorting_key != 'name':
sorting_list = [(o[1][sorting_key][()], o)
for o in object_list]
sorted_list = sorted(sorting_list, key=itemgetter(0))
return [x[1] for x in sorted_list]
if sorting_key == 'name':
sorting_list = [(_get_number_list(o[1].name),o)
for o in object_list]
sorting_list.sort()
return [x[1] for x in sorting_list]
except:
#The only way to reach this point is to have different
#structures among the different entries. In that case
#defaults to the unfiltered case
_logger.warning("Default ordering. "
"Probably all entries do not have the key %s", sorting_key)
return object_list
def _get_number_list(txt):
rexpr = '[/a-zA-Z:-]'
nbs= [float(w) for w in re.split(rexpr, txt) if w not in ['',' ']]
return nbs
def isGroup(item):
if isinstance(item, Group):
return True
elif hasattr(item, "keys"):
return True
elif is_group(item):
return True
else:
return False
def isDataset(item):
if isinstance(item, Dataset):
return True
elif is_dataset(item):
return True
else:
return False
[docs]def getEntryName(path):
"""
Retrieve the top level name (not h5py object) associated to a given path
despite being or not an NXentry group.
"""
entry = path
candidate = posixpath.dirname(entry)
while len(candidate) > 1:
entry = candidate
candidate = posixpath.dirname(entry)
return entry
[docs]def getTitle(h5file, path):
"""
Retrieve the title associated to the entry asoociated to the provided path
It returns an emptry string of not title is found
"""
entry = h5file[getEntryName(path)]
title = ''
if "title" in entry:
title = entry["title"][()]
if hasattr(title, "dtype"):
_logger.warning("entry title should be a string not an array")
if hasattr(title, "__len__"):
if len(title) == 1:
title = title[0]
if hasattr(title, "decode"):
title = title.decode("utf-8")
return title
[docs]def getNXdataList(h5file, path, objects=False):
"""
Retrieve the hdf5 group names down a given path where the NXclass attribute
is set to "NXdata".
If groups is False (default) it returns the dataset names.
If groups is True it returns the actual objects.
"""
return getNXClassList(h5file, path, classes=["NXdata", b"NXdata"], objects=objects)
[docs]def getNXClassList(h5file, path, classes, objects=False):
"""
Retrieve the hdf5 group names down a given path where the NXclass attribute
is set to one of the items in the classes list.
If objects is False (default) it returns the group names.
If objects is True it returns the actual HDF5 group objects.
"""
pathList =[]
def visit_function(name, obj):
if isGroup(obj):
append = False
forget = False
namebased = False
for key, value in obj.attrs.items():
if key in ["NX_class", b"NX_class"]:
if value in classes:
append = True
else:
forget = True
if append:
if objects:
pathList.append(obj)
else:
pathList.append(obj.name)
if hasattr(h5file[path], "visititems"):
# prevent errors dealing with toplevel datasets
h5file[path].visititems(visit_function)
return pathList
[docs]def getMcaList(h5file, path, dataset=False, ignore=None):
"""
Retrieve the hdf5 dataset names down a given path where the interpretation attribute
is set to "spectrum".
It also considers as eligible datasets, those whose last dimension is more than 1 and
their name or parent group name start by mca.
If dataset is False (default) it returns the dataset names.
If dataset is True it returns the actual datasets.
Apparently visititems ignores links. The following situation would not work:
Actual dataset in /entry/detector/data with no interpretation attribute set
and link to it named /entry/measurement/mca
"""
if ignore is None:
ignore = ["channels",
"calibration",
"live_time",
"preset_time",
"elapsed_time",
"i0",
"it",
"i0_to_flux_factor",
"it_to_flux_factor",
"time",
"energy"]
datasetList =[]
def visit_function(name, obj):
if is_dataset(obj):
append = False
forget = False
namebased = False
for key, value in obj.attrs.items():
if key == "interpretation":
if value in ["spectrum", b"spectrum"]:
append = True
else:
forget = True
if (not append) and (not forget):
#support (risky) name based solutions too.
# the dataset name starts with MCA or
# the parent group starts with MCA
if posixpath.basename(name).lower().startswith("mca") or \
posixpath.basename(posixpath.dirname(name)).lower().startswith("mca"):
append = True
namebased = True
if append:
# an actual MCA spectrum will have more than one channel
if (not namebased) and ("measurement" in name):
# ALBA sets the interpretation attribute to spectrum
# to every counter in the measurement group
if len(obj.shape) == 1:
# I have to figure out if in fact it is just a
# misuse of the interpretation attribute
posnames = getScannedPositioners(h5file, path)
for motor in posnames:
if h5file[motor].size == obj.size:
append = False
if append:
# perform some name filtering
if posixpath.basename(obj.name).lower() in ignore:
append = False
if append:
# the measurement group
if len(obj.shape) > 0:
if obj.shape[-1] > 1:
if dataset:
datasetList.append(obj)
else:
datasetList.append(obj.name)
if hasattr(h5file[path], "visititems"):
# prevent errors dealing with toplevel datasets
h5file[path].visititems(visit_function)
return datasetList
[docs]def getMcaObjectPaths(h5file, mcaPath):
"""
Given an h5py instance and the path to a dataset, try to retrieve all the
paths with associated information needed to build an McaSpectrumObject.
McaSpectrumObject is a DataObject where data are the counts and the info
part contains the information below
- live_time
- preset_time
- elapsed_time
- counts
- channels
- calibration
The information below will be read but is not used as it does not belong to the
detector but to a yet-to-be-defined PyMca XRF application definition. Please do
not rely on it.
- i0
- it
- i0_to_flux_factor
- it_to_flux_factor
"""
if not mcaPath.startswith("/"):
# this is needed in order to avoid posixpath to return
# an empty string
mcaPath = "/" + mcaPath
mca = {}
mca["counts"] = mcaPath
mcaKeys = ["channels",
"calibration",
"live_time",
"preset_time",
"elapsed_time",
"i0",
"it",
"i0_to_flux_factor",
"it_to_flux_factor"]
# This initialization is not needed (at least for the time being)
#mca["channels"] = None
#mca["live_time"] = None
#mca["elapsed_time"] = None
#mca["preset_time"]= None
#mca["calibration"] = [0.0, 1.0, 0.0]
#mca["i0"] = None
#mca["it"] = None
#mca["i0_to_flux_factor"] = 1.0
#mca["it_to_flux_factor"] = 1.0
# look at the same level as the dataset
parentPath = posixpath.dirname(mcaPath)
searchPaths =[parentPath]
# look at a container group named info at the same level
if "info" in h5file[parentPath]:
infoPath = posixpath.join(parentPath, "info")
searchPaths.append(infoPath)
# look at one level higher if the container is an NXdetector
detectorPath = posixpath.dirname(parentPath)
nxClass = ""
obj = h5file[detectorPath]
for key, value in obj.attrs.items():
if key in ["NX_class", b"NX_class"]:
if value in ["NXdetector", b"NXdetector"]:
searchPaths.append(detectorPath)
# look for the relevant information in those groups
for path in searchPaths:
group = h5file[path]
items_list = list(group.items())
for key, item in items_list:
baseKey = posixpath.basename(key)
if (baseKey in mcaKeys) and (key != mcaPath):
if baseKey not in mca:
mca[baseKey] = item.name
if len(mca) == 1:
# we found nothing
# check if we are dealing with a soft link
basename = posixpath.basename(mcaPath)
link = h5file[parentPath].get(basename, getlink=True)
if hasattr(link, "path"):
if hasattr(link, "filename"):
# external link
filename = link.filename
if os.path.exists(filename):
# it should always exist
h5file = File(filename, "r")
mca = getMcaObjectPaths(h5file, link.path)
keys = list(mca.keys())
for key in keys:
mca[key] = filename + "::" + mca[key]
else:
# soft link
mca = getMcaObjectPaths(h5file, link.path)
mca["counts"] = mcaPath
return mca
[docs]def getNXClassGroups(h5file, path, classes, single=False):
"""
Retrieve the hdf5 groups inside a given path where the NX_class attribute
matches one of the items in the classes list.
"""
groups = []
items_list = list(h5file[path].items())
if ("NXentry" in classes) or (b"NXentry" in classes):
items_list = h5py_sorting(items_list)
for key, group in items_list:
if not isGroup(group):
continue
for attr in group.attrs:
if attr in ["NX_class", b"NX_class"]:
if group.attrs[attr] in classes:
groups.append(group)
if single:
break
return groups
[docs]def getPositionersGroup(h5file, path):
"""
Retrieve the positioners group associated to a path
retrieving them from the same entry.
It assumes they are either in:
- NXentry/NXinstrument/positioners or
- NXentry/measurement/pre_scan_snapshot
"""
entry_path = getEntryName(path)
instrument = getNXClassGroups(h5file, entry_path, ["NXinstrument", b"NXinstrument"], single=True)
positioners = None
if len(instrument):
instrument = instrument[0]
for key in instrument.keys():
if key in ["positioners", b"positioners"]:
positioners = instrument[key]
if not isGroup(positioners):
positioners = None
if positioners is None:
# sardana stores the positioners inside measurement/pre_scan_snapshot
entry = h5file[entry_path]
sardana = "measurement/pre_scan_snapshot"
if sardana in entry:
group = entry[sardana]
if isGroup(group):
positioners = group
return positioners
[docs]def getMeasurementGroup(h5file, path):
"""
Retrieve the measurement group associated to a path
retrieving them from the same entry.
It looks for:
- A group named measurement at the entry level
- The NXdata group at the entry level with the greater number of datasets
"""
if path in ["/", b"/", "", b""]:
raise ValueError("path cannot be the toplevel root")
entry_path = getEntryName(path)
entry = h5file[entry_path]
if hasattr(entry, "items"):
items_list = entry.items()
else:
# we have received a top level dataset
return None
measurement = None
for key, group in items_list:
if key in ["measurement", b"measurement"]:
if isGroup(group):
measurement = group
if measurement is None:
# try to get the default NXdata groups as measurement group
default = None
for attr in entry.attrs:
if attr in ["default", b"default"]:
default = entry.attrs[attr]
# hdf5 stores in utf-8 the paths if we got bytes, they need to be converted
if hasattr(default, "decode"):
default = default.decode()
if default is None:
# get the NXdata group just behind entry that contains more items inside
# and take it as measurement group
nxdatas = getNXClassGroups(h5file, entry_path, ["NXdata", b"NXdata"], single=False)
if len(nxdatas):
measurement = nxdatas[0]
nitems = len(measurement)
for group in nxdatas:
if len(group) > nitems:
measurement = group
nitems = len(measurement)
else:
# default could ne anything ... crashes should be prevented
if default in entry:
group = entry[default]
if isGroup(group):
measurement = group
return measurement
def getInstrumentGroup(h5file, path):
entry_name = getEntryName(path)
groups = getNXClassGroups(h5file, entry_name, ["NXinstrument", b"NXinstrument"] , single=False)
n = len(groups)
if n == 0:
return None
else:
if n > 1:
_logger.warning("More than one instrument associated to the same entry")
return groups[0]
[docs]def getScannedPositioners(h5file, path):
"""
Try to retrieve the positioners (aka. motors) that were moved.
For that:
- Look for datasets present at measurement and positioners groups
- Look for positioners with more than one single value
- Look for datasets present at measurement and title
"""
entry_name = getEntryName(path)
measurement = getMeasurementGroup(h5file, entry_name)
scanned = []
if measurement is not None:
positioners = getPositionersGroup(h5file, entry_name)
if positioners is not None:
priorityPositioners = False
if priorityPositioners:
counters = [key for key, item in measurement.items() if isDataset(item)]
scanned = [item.name for key, item in positioners.items() if key in counters]
else:
motors = [key for key, item in positioners.items() if isDataset(item)]
scanned = [item.name for key, item in measurement.items() if key in motors]
if len(scanned) > 1:
# check that motors are not duplicated without reason
scanned = [item.name for key, item in measurement.items() if \
(key in motors) and \
(hasattr(item, "size") and (item.size > 1))]
if not len(scanned):
# look for datasets with more than one single value inside positioners
scanned = [item.name for key, item in positioners.items() if \
isDataset(item) and \
(hasattr(item, "size") and (item.size > 1))]
if not len(scanned):
entry = h5file[entry_name]
if "title" in entry:
title = entry["title"][()]
if hasattr(title, "dtype"):
_logger.warning("entry title should be a string not an array")
if hasattr(title, "__len__"):
if len(title) == 1:
title = title[0]
if hasattr(title, "decode"):
title = title.decode("utf-8")
if hasattr(title, "split"):
tokens = title.split()
else:
candidates = [key for key, item in measurement.items() if \
isDataset(item) and \
(key in tokens)]
indices = []
for key in candidates:
indices.append((tokens.index(key), key))
indices.sort()
if len(indices):
scanned = [measurement[key].name for idx, key in indices]
return scanned
if __name__ == "__main__":
import sys
import h5py
try:
sourcename=sys.argv[1]
except:
print("Usage: NexusTools <file> <key>")
sys.exit()
try:
from silx.io import open as h5open
h5 = h5open(sourcename)
except:
h5 = h5py.File(sourcename, 'r')
entries = getNXClassGroups(h5, "/", ["NXentry", b"NXentry"], single=False)
if not len(entries):
entries = [item for name, item in h5["/"].items() if isGroup(item)]
for entry in entries:
print("Entry name = %s" % entry.name)
if "title" in entry:
print("Entry title = %s" % entry["title"][()])
measurement = getMeasurementGroup(h5, entry.name)
if measurement is None:
print("No measurement")
else:
print("Measurement name = %s " % measurement.name)
instrument = getInstrumentGroup(h5, entry.name)
if instrument is None:
print("No instrument")
else:
print("Instrument name = %s " % instrument.name)
positioners = getPositionersGroup(h5, entry.name)
if positioners is None:
print("No positioners")
else:
print("Positioners name = %s " % positioners.name)
scanned = getScannedPositioners(h5, entry.name)
if len(scanned):
for i in range(len(scanned)):
print("Scanned motors %d = %s" % (i, scanned[i]))
else:
print("Unknown scanned motors")
mca = getMcaList(h5, entry.name, dataset=False)
if len(mca):
for i in range(len(mca)):
print("MCA dataset %d = %s" % (i, mca[i]))
info = getMcaObjectPaths(h5, mca[i])
for key in info:
print('mca["%s"] = %s' % (key, info[key]))
else:
print("No MCA found")