Usage¶
hdf5plugin
allows using additional HDF5 compression filters with h5py for reading and writing compressed datasets.
Available constants:
hdf5plugin.FILTERS
: A dictionary mapping provided filters to their IDhdf5plugin.PLUGINS_PATH
: The directory where the provided filters library are stored.
Read compressed datasets¶
In order to read compressed dataset with h5py, use:
import hdf5plugin
It registers hdf5plugin
supported compression filters with the HDF5 library used by h5py.
Hence, HDF5 compressed datasets can be read as any other dataset (see h5py documentation).
Write compressed datasets¶
As for reading compressed datasets, import hdf5plugin
is required to enable the supported compression filters.
To create a compressed dataset use h5py.Group.create_dataset and set the compression
and compression_opts
arguments.
hdf5plugin
provides helpers to prepare those compression options: Bitshuffle, Blosc, FciDecomp, LZ4, Zfp, Zstd.
Sample code:
import numpy
import h5py
import hdf5plugin
# Compression
f = h5py.File('test.h5', 'w')
f.create_dataset('data', data=numpy.arange(100), **hdf5plugin.LZ4())
f.close()
# Decompression
f = h5py.File('test.h5', 'r')
data = f['data'][()]
f.close()
Relevant h5py documentation: Filter pipeline and Chunked Storage.
Bitshuffle¶
-
class
hdf5plugin.
Bitshuffle
(nelems=0, lz4=True)¶ h5py.Group.create_dataset
’s compression arguments for using bitshuffle filter.It can be passed as keyword arguments:
f = h5py.File('test.h5', 'w') f.create_dataset( 'bitshuffle_with_lz4', data=numpy.arange(100), **hdf5plugin.Bitshuffle(nelems=0, lz4=True)) f.close()
- Parameters
nelems (int) – The number of elements per block. It needs to be divisible by eight (default is 0, about 8kB per block) Default: 0 (for about 8kB per block).
lz4 (bool) – Whether to use lz4 compression or not as part of the filter. Default: True
-
filter_id
= 32008¶
Blosc¶
-
class
hdf5plugin.
Blosc
(cname='lz4', clevel=5, shuffle=1)¶ h5py.Group.create_dataset
’s compression arguments for using blosc filter.It can be passed as keyword arguments:
f = h5py.File('test.h5', 'w') f.create_dataset( 'blosc_byte_shuffle_blosclz', data=numpy.arange(100), **hdf5plugin.Blosc(cname='blosclz', clevel=9, shuffle=hdf5plugin.Blosc.SHUFFLE)) f.close()
- Parameters
cname (str) – blosclz, lz4 (default), lz4hc, zlib, zstd Optional: snappy, depending on compilation (requires C++11).
clevel (int) – Compression level from 0 (no compression) to 9 (maximum compression). Default: 5.
shuffle (int) – One of: - Blosc.NOSHUFFLE (0): No shuffle - Blosc.SHUFFLE (1): byte-wise shuffle (default) - Blosc.BITSHUFFLE (2): bit-wise shuffle
-
BITSHUFFLE
= 2¶ Flag to enable bit-wise shuffle pre-compression filter
-
NOSHUFFLE
= 0¶ Flag to disable data shuffle pre-compression filter
-
SHUFFLE
= 1¶ Flag to enable byte-wise shuffle pre-compression filter
-
filter_id
= 32001¶
FciDecomp¶
-
class
hdf5plugin.
FciDecomp
(*args, **kwargs)¶ h5py.Group.create_dataset
’s compression arguments for using FciDecomp filter.It can be passed as keyword arguments:
f = h5py.File('test.h5', 'w') f.create_dataset( 'fcidecomp', data=numpy.arange(100), **hdf5plugin.FciDecomp()) f.close()
-
filter_id
= 32018¶
-
LZ4¶
-
class
hdf5plugin.
LZ4
(nbytes=0)¶ h5py.Group.create_dataset
’s compression arguments for using lz4 filter.It can be passed as keyword arguments:
f = h5py.File('test.h5', 'w') f.create_dataset('lz4', data=numpy.arange(100), **hdf5plugin.LZ4(nbytes=0)) f.close()
- Parameters
nbytes (int) – The number of bytes per block. It needs to be in the range of 0 < nbytes < 2113929216 (1,9GB). Default: 0 (for 1GB per block).
-
filter_id
= 32004¶
Zfp¶
-
class
hdf5plugin.
Zfp
(rate=None, precision=None, accuracy=None, reversible=False, minbits=None, maxbits=None, maxprec=None, minexp=None)¶ h5py.Group.create_dataset
’s compression arguments for using ZFP filter.It can be passed as keyword arguments:
f = h5py.File('test.h5', 'w') f.create_dataset( 'zfp', data=numpy.random.random(100), **hdf5plugin.Zfp()) f.close()
This filter provides different modes:
Fixed-rate mode: To use, set the
rate
argument. For details, see zfp fixed-rate mode.f.create_dataset( 'zfp_fixed_rate', data=numpy.random.random(100), **hdf5plugin.Zfp(rate=10.0))
Fixed-precision mode: To use, set the
precision
argument. For details, see zfp fixed-precision mode.f.create_dataset( 'zfp_fixed_precision', data=numpy.random.random(100), **hdf5plugin.Zfp(precision=10))
Fixed-accuracy mode: To use, set the
accuracy
argument For details, see zfp fixed-accuracy mode.f.create_dataset( 'zfp_fixed_accuracy', data=numpy.random.random(100), **hdf5plugin.Zfp(accuracy=0.001))
Reversible (i.e., lossless) mode: To use, set the
reversible
argument to True For details, see zfp reversible mode.f.create_dataset( 'zfp_reversible', data=numpy.random.random(100), **hdf5plugin.Zfp(reversible=True))
Expert mode: To use, set the
minbits
,maxbits
,maxprec
andminexp
arguments. For details, see zfp expert mode.f.create_dataset( 'zfp_expert', data=numpy.random.random(100), **hdf5plugin.Zfp(minbits=1, maxbits=16657, maxprec=64, minexp=-1074))
- Parameters
rate (float) – Use fixed-rate mode and set the number of compressed bits per value.
precision (float) – Use fixed-precision mode and set the number of uncompressed bits per value.
accuracy (float) – Use fixed-accuracy mode and set the absolute error tolerance.
reversible (bool) – If True, it uses the reversible (i.e., lossless) mode.
minbits (int) – Minimum number of compressed bits used to represent a block.
maxbits (int) – Maximum number of bits used to represent a block.
maxprec (int) – Maximum number of bit planes encoded. It controls the relative error.
minexp (int) – Smallest absolute bit plane number encoded. It controls the absolute error.
-
filter_id
= 32013¶
Use HDF5 filters in other applications¶
Non h5py or non-Python users can also benefit from the supplied HDF5 compression filters for reading compressed datasets by setting the HDF5_PLUGIN_PATH
environment variable the value of hdf5plugin.PLUGINS_PATH
, which can be retrieved from the command line with:
python -c "import hdf5plugin; print(hdf5plugin.PLUGINS_PATH)"
For instance:
export HDF5_PLUGIN_PATH=$(python -c "import hdf5plugin; print(hdf5plugin.PLUGINS_PATH)")
should allow MatLab or IDL users to read data compressed using the supported plugins.
Setting the HDF5_PLUGIN_PATH
environment variable allows already existing programs or Python code to read compressed data without any modification.