Abstract

hdf5plugin is a Python package (1) providing a set of HDF5 compression filters (namely: Blosc, Blosc2, BitShuffle, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, ZStandard) and (2) enabling their use from the Python programming language with h5py a thin, pythonic wrapper around libHDF5.

This presentation illustrates how to use hdf5plugin for reading and writing compressed datasets from Python and gives an overview of the different HDF5 compression filters it provides.

License: CC-BY 4.0

Restart kernel once the file is created!

[ ]:
import os
os._exit(0)  # Makes the kernel restart

e02b420efa1d4f0d8fe8005d8cede22b

1ed53b63750440049aa5069862e26a64

hdf5plugin

hdf5plugin packages a set of HDF5 compression filters and makes them usable from the Python programming language through h5py.

h5py is a thin, pythonic wrapper around HDF5.

Presenter: Thomas VINCENT

European HDF5 User Group Meeting 2023, September 19, 2023

[1]:
from h5glance import H5Glance  # Browsing HDF5 files
H5Glance("data.h5")
[1]:
    • compressed_data [📋]: 3744 × 5286 entries, dtype: uint8
    • copyright [📋]: scalar entries, dtype: UTF-8 string
    • data [📋]: 3744 × 5286 entries, dtype: uint8
[2]:
import h5py  # Pythonic HDF5 wrapper: https://docs.h5py.org/

h5file = h5py.File("data.h5", mode="r")  # Open HDF5 file in read mode
data = h5file["/data"][()]               # Access HDF5 dataset "/data"
[3]:
%matplotlib inline
from matplotlib import pyplot as plt

plt.imshow(data, cmap="gray")
[3]:
<matplotlib.image.AxesImage at 0x7f0896e60760>
../_images/hdf5plugin_EuropeanHUG2023_presentation_10_1.png
[4]:
data = h5file["/compressed_data"][()]  # Access compressed dataset
---------------------------------------------------------------------------
OSError                                   Traceback (most recent call last)
Input In [4], in <cell line: 1>()
----> 1 data = h5file["/compressed_data"][()]

File h5py/_objects.pyx:54, in h5py._objects.with_phil.wrapper()

File h5py/_objects.pyx:55, in h5py._objects.with_phil.wrapper()

File ~/venvs/py310/lib/python3.10/site-packages/h5py/_hl/dataset.py:758, in Dataset.__getitem__(self, args, new_dtype)
    756 if self._fast_read_ok and (new_dtype is None):
    757     try:
--> 758         return self._fast_reader.read(args)
    759     except TypeError:
    760         pass  # Fall back to Python read pathway below

File h5py/_selector.pyx:376, in h5py._selector.Reader.read()

OSError: Can't read data (can't open directory: /usr/local/hdf5/lib/plugin)
[ ]:
# Check dataset's filters
plist = h5file["/compressed_data"].id.get_create_plist()
plist.get_filter(0)[0::3]

hdf5plugin usage

Reading compressed datasets

To enable reading compressed datasets not supported by libHDF5 and h5py: Install hdf5plugin & import it.

[ ]:
%%bash
pip3 install hdf5plugin
# Or:
conda install -c conda-forge hdf5plugin

Or on Debian12 and Ubuntu23.04:

[ ]:
%%bash
apt-get install python3-hdf5plugin
[5]:
import hdf5plugin
[6]:
data = h5file["/compressed_data"][()]  # Access datset
plt.imshow(data, cmap="gray")          # Display data
[6]:
<matplotlib.image.AxesImage at 0x7f089182d480>
../_images/hdf5plugin_EuropeanHUG2023_presentation_19_1.png
[7]:
h5file.close()  # Close the HDF5 file

Writing compressed datasets

When writing datasets with h5py, compression can be specified with: h5py.Group.create_dataset

[8]:
# Create a dataset with h5py without compression
h5file = h5py.File("new_file_uncompressed.h5", mode="w")
h5file.create_dataset("/data", data=data)
h5file.close()
[9]:
# Create a compressed dataset
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
    "/compressed_data",
    data=data,
    compression=32026,  # Blosc2 HDF5 filter identifier
    # options: 0, 0, 0, 0, level, filter, compression
    compression_opts=(0, 0, 0, 0, 5, 2, 1)
)
h5file.close()

hdf5plugin provides some helpers to ease dealing with compression filter and options:

[10]:
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
    "/compressed_data",
    data=data,
    compression=hdf5plugin.Blosc2(
        cname='lz4',
        clevel=5,
        filters=hdf5plugin.Blosc2.BITSHUFFLE),
)
h5file.close()
[ ]:
help(hdf5plugin.Blosc2)
[12]:
H5Glance("new_file_blosc2_bitshuffle_lz4.h5")
[12]:
    • compressed_data [📋]: 3744 × 5286 entries, dtype: uint8
[13]:
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="r")
plt.imshow(h5file["/compressed_data"][()], cmap="gray")
h5file.close()
../_images/hdf5plugin_EuropeanHUG2023_presentation_28_0.png
[14]:
!ls -sh new_file*.h5
18M new_file_blosc2_bitshuffle_lz4.h5  19M new_file_uncompressed.h5

HDF5 compression filters

Available through h5py

[15]:
h5file = h5py.File("new_file_shuffle_gzip.h5", mode="w")
h5file.create_dataset(
    "/compressed_data_shuffle_gzip", data=data, shuffle=True, compression="gzip")
h5file.close()

Provided by hdf5plugin

Additional compression filters provided by hdf5plugin:

BitShuffle, Blosc, Blosc2, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, Zstandard

10 out of the 29 HDF5 registered filter plugins as of September 2023

[16]:
h5file = h5py.File("new_file_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
    "/compressed_data_bitshuffle_lz4",
    data=data,
    compression=hdf5plugin.Bitshuffle()
)
h5file.close()

General purpose lossless compression

Specific compression

  • FciDecomp() - ID 32018: Based on JPEG-LS:

    • Optional: requires C++11

    • Data type: (u)int8 or (u)int16

    • Chunk shape: “Image-like”; 2 or 3 dimensions with at least 16 pixels and at most 65535 rows and columns and at most 4 planes for 3D datasets.

Lossy compression 1/2

SZcompressor family: error-bounded lossy compression

Lossy compression 2/2

Meta-compressor: Blosc family

Equivalent filters

Blosc and Blosc2 includes some pre-compression filters and algorithms provided by other HDF5 compression filters:

  • HDF5 shuffle => Blosc2(..., filters=Blosc2.SHUFFLE)

  • Bitshuffle() => Blosc2("lz4" or "zstd", 5, Blosc2.BITSHUFFLE)

  • LZ4() => Blosc2("lz4", 9)

  • Zstd() => Blosc2("zstd", 2)

Blosc2 filter could also provide ZFP

A look at performances on a single use case

Multithreaded filter execution

Some filters can use multithreading:

  • Blosc/Blosc2:

    • Using a pool of threads

    • Disabled by default for Blosc1

    • Configurable with BLOSC_NTHREADS environment variable

  • Bitshuffle, Fcidecomp, SZ, SZ3, ZFP:

    • Using OpenMP

    • Enabled at compilation time

    • If enabled, configurable with OMP_NUM_THREADS environment variable

Performance do not increase linearly with the number of CPU cores used.

Summary

Having different pre-compression filters and compression algorithms at hand offers different read/write speed versus compression rate (and eventually error rate) trade-offs.

Also to keep in mind availability/compatibility: Since "gzip" is included in libHDF5 it is the most compatible one (and also "lzf" as included in h5py).

Using hdf5plugin filters with other applications

Set the HDF5_PLUGIN_PATH environment variable to: hdf5plugin.PLUGINS_PATH

[ ]:
%%bash
export HDF5_PLUGIN_PATH=`python3 -c "
import hdf5plugin; print(hdf5plugin.PLUGINS_PATH)"`
echo "HDF5_PLUGIN_PATH=${HDF5_PLUGIN_PATH}"
ls ${HDF5_PLUGIN_PATH}

Note: Only works for reading compressed datasets, not for writing!

A word about hdf5plugin license

The source code of hdf5plugin itself is licensed under the MIT license…

It also embeds the source code of the provided compression filters and libraries which are licensed under different open-source licenses (Apache, BSD-2, BSD-3, MIT, Zlib…) and copyrights.

Limitations

  • Need to link filters with libhdf5:

    • hdf5plugin relies on a “hack” to avoid linking with libhdf5

  • Compressed data accessed by “chunks” even if compressor uses smaller blocks

  • Multi-threaded access support

  • When reading compressed data, some memory copy could be spared:

    • Direct chunk access offers a way to improve performance/flexibility

Avoid memory copies

Compression filters allocates a memory buffer to store decompressed data = memory copies.

Allowing the user to pass a memory buffer through h5py->libhdf5->compression_filter would prevent it.

An example with h5py and Blosc2 (bitshuffle+lz4) for a 8.5MB chunk on 1 core (± ~300 µs):

  • Standard access dataset[()]: 8.9 ms

  • read_direct() to existing array: 5.2 ms

  • read_direct_chunk() & decompression with blosc2: 3.7 ms

Credits

To hdf5plugin contributors: Armando Sole, @orioltinto, @mkitti, @Florian-toll, Jerome Kieffer, @fpwg, @mobiusklein, @junyuewang, @Anthchirp, and

to all contributors of embedded libraries

Partially funded by the LEAPS-INNOV and PaNOSC EU-project.

5443e9d5a23f4e219aa6794b5046a9ee This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement no. 101004728 and 823852.

Conlusion

hdf5plugin provides additional HDF5 compression filters (namely: BitShuffle, Blosc, Blosc2, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, Zstandard) mainly for use with h5py.