Abstract
hdf5plugin is a Python package (1) providing a set of HDF5 compression filters (namely: Blosc, Blosc2, BitShuffle, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, ZStandard) and (2) enabling their use from the Python programming language with h5py a thin, pythonic wrapper around libHDF5
.
This presentation illustrates how to use hdf5plugin for reading and writing compressed datasets from Python and gives an overview of the different HDF5 compression filters it provides.
License: CC-BY 4.0
Restart kernel once the file is created!
[ ]:
import os
os._exit(0) # Makes the kernel restart
hdf5plugin
hdf5plugin packages a set of HDF5 compression filters and makes them usable from the Python programming language through h5py.
h5py is a thin, pythonic wrapper around HDF5.
Presenter: Thomas VINCENT
European HDF5 User Group Meeting 2023, September 19, 2023
[1]:
from h5glance import H5Glance # Browsing HDF5 files
H5Glance("data.h5")
[1]:
[2]:
import h5py # Pythonic HDF5 wrapper: https://docs.h5py.org/
h5file = h5py.File("data.h5", mode="r") # Open HDF5 file in read mode
data = h5file["/data"][()] # Access HDF5 dataset "/data"
[3]:
%matplotlib inline
from matplotlib import pyplot as plt
plt.imshow(data, cmap="gray")
[3]:
<matplotlib.image.AxesImage at 0x7f0896e60760>
[4]:
data = h5file["/compressed_data"][()] # Access compressed dataset
---------------------------------------------------------------------------
OSError Traceback (most recent call last)
Input In [4], in <cell line: 1>()
----> 1 data = h5file["/compressed_data"][()]
File h5py/_objects.pyx:54, in h5py._objects.with_phil.wrapper()
File h5py/_objects.pyx:55, in h5py._objects.with_phil.wrapper()
File ~/venvs/py310/lib/python3.10/site-packages/h5py/_hl/dataset.py:758, in Dataset.__getitem__(self, args, new_dtype)
756 if self._fast_read_ok and (new_dtype is None):
757 try:
--> 758 return self._fast_reader.read(args)
759 except TypeError:
760 pass # Fall back to Python read pathway below
File h5py/_selector.pyx:376, in h5py._selector.Reader.read()
OSError: Can't read data (can't open directory: /usr/local/hdf5/lib/plugin)
[ ]:
# Check dataset's filters
plist = h5file["/compressed_data"].id.get_create_plist()
plist.get_filter(0)[0::3]
hdf5plugin
usage
Reading compressed datasets
To enable reading compressed datasets not supported by libHDF5
and h5py
: Install hdf5plugin & import it.
[ ]:
%%bash
pip3 install hdf5plugin
# Or:
conda install -c conda-forge hdf5plugin
Or on Debian12 and Ubuntu23.04:
[ ]:
%%bash
apt-get install python3-hdf5plugin
[5]:
import hdf5plugin
[6]:
data = h5file["/compressed_data"][()] # Access datset
plt.imshow(data, cmap="gray") # Display data
[6]:
<matplotlib.image.AxesImage at 0x7f089182d480>
[7]:
h5file.close() # Close the HDF5 file
Writing compressed datasets
When writing datasets with h5py
, compression can be specified with: h5py.Group.create_dataset
[8]:
# Create a dataset with h5py without compression
h5file = h5py.File("new_file_uncompressed.h5", mode="w")
h5file.create_dataset("/data", data=data)
h5file.close()
[9]:
# Create a compressed dataset
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
"/compressed_data",
data=data,
compression=32026, # Blosc2 HDF5 filter identifier
# options: 0, 0, 0, 0, level, filter, compression
compression_opts=(0, 0, 0, 0, 5, 2, 1)
)
h5file.close()
hdf5plugin
provides some helpers to ease dealing with compression filter and options:
[10]:
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
"/compressed_data",
data=data,
compression=hdf5plugin.Blosc2(
cname='lz4',
clevel=5,
filters=hdf5plugin.Blosc2.BITSHUFFLE),
)
h5file.close()
[ ]:
help(hdf5plugin.Blosc2)
[12]:
H5Glance("new_file_blosc2_bitshuffle_lz4.h5")
[12]:
- compressed_data [📋]: 3744 × 5286 entries, dtype: uint8
[13]:
h5file = h5py.File("new_file_blosc2_bitshuffle_lz4.h5", mode="r")
plt.imshow(h5file["/compressed_data"][()], cmap="gray")
h5file.close()
[14]:
!ls -sh new_file*.h5
18M new_file_blosc2_bitshuffle_lz4.h5 19M new_file_uncompressed.h5
HDF5 compression filters
Available through h5py
Pre-compression filter: Byte-Shuffle provided by
libhdf5
Compression filters provided by h5py:
Provided by
libhdf5
: “gzip” and eventually “szip” (optional)Bundled with
h5py
: “lzf”
[15]:
h5file = h5py.File("new_file_shuffle_gzip.h5", mode="w")
h5file.create_dataset(
"/compressed_data_shuffle_gzip", data=data, shuffle=True, compression="gzip")
h5file.close()
Provided by hdf5plugin
Additional compression filters provided by hdf5plugin
:
BitShuffle, Blosc, Blosc2, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, Zstandard
10 out of the 29 HDF5 registered filter plugins as of September 2023
[16]:
h5file = h5py.File("new_file_bitshuffle_lz4.h5", mode="w")
h5file.create_dataset(
"/compressed_data_bitshuffle_lz4",
data=data,
compression=hdf5plugin.Bitshuffle()
)
h5file.close()
General purpose lossless compression
Bitshuffle(nelems=0, cname=’lz4’, clevel=3) - ID 32008
Bit-Shuffle + LZ4, ZStd or no compression
BZip2(blocksize=9) - ID 307
LZ4(nbytes=0) - ID 32004
Zstd(clevel=3) - ID 32015
Specific compression
FciDecomp() - ID 32018: Based on JPEG-LS:
Optional: requires C++11
Data type:
(u)int8
or(u)int16
Chunk shape: “Image-like”; 2 or 3 dimensions with at least 16 pixels and at most 65535 rows and columns and at most 4 planes for 3D datasets.
Lossy compression 1/2
SZcompressor family: error-bounded lossy compression
Lossy compression 2/2
ZFP(rate=None, precision=None, accuracy=None, reversible=False, minbits=None, maxbits=None, maxprec=None, minexp=None) - ID 32013:
Data type:
float32
,float64
,(u)int32
,(u)int64
Chunk shape: must have at most 4 non-unity dimensions
Meta-compressor: Blosc family
Blosc(cname=’lz4’, clevel=5, shuffle=1) - ID 32001:
Based on c-blosc: A blocking, shuffling and lossless compression library
Pre-compression shuffle: None, Byte-Shuffle, Bit-Shuffle
Compression:
blosclz
,lz4
,lz4hc
,snappy
(optional, requires C++11),zlib
,zstd
Blosc2(cname=’blosclz’, clevel=5, filters=1) - ID 32026:
Based on c-blosc2: A high performance compressor optimized for binary data
Pre-compression filters: None, Byte-Shuffle, Bit-Shuffle, and more
Compression:
blosclz
,lz4
,lz4hc
,zlib
,zstd
More filters and compressions can be supported:
zfp
,htj2k
Equivalent filters
Blosc
and Blosc2
includes some pre-compression filters and algorithms provided by other HDF5 compression filters:
HDF5 shuffle =>
Blosc2(..., filters=Blosc2.SHUFFLE)
Bitshuffle()
=>Blosc2("lz4" or "zstd", 5, Blosc2.BITSHUFFLE)
LZ4()
=>Blosc2("lz4", 9)
Zstd()
=>Blosc2("zstd", 2)
Blosc2
filter could also provide ZFP
A look at performances on a single use case
Machine: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz (40 cores)
Filesystem: /dev/shm
hdf5plugin
built from sourceRunning on a single core
Diffraction tomography dataset: 100 frames from http://www.silx.org/pub/pyFAI/pyFAI_UM_2020/data_ID13/kevlar.h5
Dataset: 100x2167x2070, uint16, chunk: 2167x2070
Multithreaded filter execution
Some filters can use multithreading:
Blosc/Blosc2:
Using a pool of threads
Disabled by default for Blosc1
Configurable with
BLOSC_NTHREADS
environment variable
Bitshuffle, Fcidecomp, SZ, SZ3, ZFP:
Using OpenMP
Enabled at compilation time
If enabled, configurable with
OMP_NUM_THREADS
environment variable
Performance do not increase linearly with the number of CPU cores used.
Summary
Having different pre-compression filters and compression algorithms at hand offers different read/write speed versus compression rate (and eventually error rate) trade-offs.
Also to keep in mind availability/compatibility: Since "gzip"
is included in libHDF5
it is the most compatible one (and also "lzf"
as included in h5py
).
Using hdf5plugin
filters with other applications
Set the HDF5_PLUGIN_PATH
environment variable to: hdf5plugin.PLUGINS_PATH
[ ]:
%%bash
export HDF5_PLUGIN_PATH=`python3 -c "
import hdf5plugin; print(hdf5plugin.PLUGINS_PATH)"`
echo "HDF5_PLUGIN_PATH=${HDF5_PLUGIN_PATH}"
ls ${HDF5_PLUGIN_PATH}
Note: Only works for reading compressed datasets, not for writing!
A word about hdf5plugin
license
The source code of hdf5plugin
itself is licensed under the MIT license…
It also embeds the source code of the provided compression filters and libraries which are licensed under different open-source licenses (Apache, BSD-2, BSD-3, MIT, Zlib…) and copyrights.
Limitations
Only “gzip” available by default:
Many compression filters provided by
hdf5plugin
are included in c-blosc2
A central repository for filters source code: https://github.com/HDFGroup/hdf5_plugins?
Need to link filters with libhdf5:
hdf5plugin
relies on a “hack” to avoid linking with libhdf5
Compressed data accessed by “chunks” even if compressor uses smaller blocks
Multi-threaded access support
When reading compressed data, some memory copy could be spared:
Direct chunk access offers a way to improve performance/flexibility
Avoid memory copies
Compression filters allocates a memory buffer to store decompressed data = memory copies.
Allowing the user to pass a memory buffer through h5py->libhdf5->compression_filter would prevent it.
An example with h5py and Blosc2 (bitshuffle+lz4) for a 8.5MB chunk on 1 core (± ~300 µs):
Standard access
dataset[()]
: 8.9 msread_direct()
to existing array: 5.2 msread_direct_chunk()
& decompression withblosc2
: 3.7 ms
Credits
To hdf5plugin contributors: Armando Sole, @orioltinto, @mkitti, @Florian-toll, Jerome Kieffer, @fpwg, @mobiusklein, @junyuewang, @Anthchirp, and
to all contributors of embedded libraries
Partially funded by the LEAPS-INNOV and PaNOSC EU-project.
This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement no. 101004728 and 823852.
Conlusion
hdf5plugin
provides additional HDF5 compression filters (namely: BitShuffle, Blosc, Blosc2, BZip2, FciDecomp, LZ4, SZ, SZ3, ZFP, Zstandard) mainly for use with h5py.
Documentation: http://www.silx.org/doc/hdf5plugin/latest/
Source code repository: https://github.com/silx-kit/hdf5plugin