pyFAI.opencl package
pyFAI.opencl.azim_csr module
- class pyFAI.opencl.azim_csr.OCL_CSR_Integrator(lut, image_size, checksum=None, empty=None, unit=None, bin_centers=None, azim_centers=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False, extra_buffers=None)
Bases:
OpenclProcessing
Class in charge of doing a sparse-matrix multiplication in OpenCL using the CSR representation of the matrix.
It also performs the preprocessing using the preproc kernel
- BLOCK_SIZE = 32
- __init__(lut, image_size, checksum=None, empty=None, unit=None, bin_centers=None, azim_centers=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False, extra_buffers=None)
- Parameters:
lut – 3-tuple of arrays data: coefficient of the matrix in a 1D vector of float32 - size of nnz indices: Column index position for the data (same size as data) indptr: row pointer indicates the start of a given row. len nbin+1
image_size – Expected image size: image.size
checksum – pre-calculated checksum of the LUT to prevent re-calculating it :)
empty – value to be assigned to bins without contribution from any pixel
unit – Storage for the unit related to the LUT
bin_centers – the radial position of the bin_center, place_holder
azim_centers – the radial position of the bin_center, place_holder
mask_checksum – placeholder for the checksum of the mask
ctx – actual working context, left to None for automatic initialization from device type or platformid/deviceid
devicetype – type of device, can be “CPU”, “GPU”, “ACC” or “ALL”
platformid – integer with the platform_identifier, as given by clinfo
deviceid – Integer with the device identifier, as given by clinfo
block_size – preferred workgroup size, may vary depending on the outcome of the compilation
profile – switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower)
extra_buffers – List of additional buffer description needed by derived classes
- buffers = [BufferDescription(name='output', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='output4', size=4, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='tmp', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image_raw', size=1, dtype=<class 'numpy.int64'>, flags=1), BufferDescription(name='image', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='variance', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark_variance', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='flat', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='polarization', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='solidangle', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='absorption', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='mask', size=1, dtype=<class 'numpy.int8'>, flags=4)]
- property check_mask
- property checksum
- compile_kernels(kernel_file=None)
Call the OpenCL compiler :param kernel_file: path to the kernel (by default use the one in the resources directory)
- guess_workgroup_size(block_size=None)
Determines the optimal workgroup size.
For azimuthal integration, especially the 2D variant, the smallest possible is the size of a warp/wavefront.
The method can be overwritten by derived classes to select larger workgoup
- Parameters:
block_size – Input workgroup size (block is the cuda name)
- Returns:
the optimal workgoup size as integer
- integrate(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, coef_power=1, out_merged=None, out_sum_data=None, out_sum_count=None)
Before performing azimuthal integration, the preprocessing is:
\[data = (data - dark) / (flat * solidangle * polarization)\]Integration is performed using the CSR representation of the look-up table
- Parameters:
dark – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
coef_power – set to 2 for variance propagation, leave to 1 for mean calculation
out_merged – destination array or pyopencl array for averaged data
out_sum_data – destination array or pyopencl array for sum of all data
out_sum_count – destination array or pyopencl array for sum of the number of pixels
- Returns:
averaged data, weighted histogram, unweighted histogram
- integrate_legacy(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, coef_power=1, out_merged=None, out_sum_data=None, out_sum_count=None)
Before performing azimuthal integration, the preprocessing is:
\[data = (data - dark) / (flat * solidangle * polarization)\]Integration is performed using the CSR representation of the look-up table
- Parameters:
dark – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
coef_power – set to 2 for variance propagation, leave to 1 for mean calculation
out_merged – destination array or pyopencl array for averaged data
out_sum_data – destination array or pyopencl array for sum of all data
out_sum_count – destination array or pyopencl array for sum of the number of pixels
- Returns:
averaged data, weighted histogram, unweighted histogram
- integrate_ng(data, dark=None, dummy=None, delta_dummy=None, error_model=ErrorModel.NO, variance=None, dark_variance=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, dark_variance_checksum=None, safe=True, workgroup_size=None, normalization_factor=1.0, weighted_average=True, out_avgint=None, out_sem=None, out_std=None, out_merged=None)
Before performing azimuthal integration with proper variance propagation, the preprocessing is:
\[signal = (raw - dark) variance = variance + dark_variance normalization = normalization_factor*(flat * solidangle * polarization * absortoption) count = number of pixel contributing\]Integration is performed using the CSR representation of the look-up table on all arrays: signal, variance, normalization and count
- Parameters:
dark – array of same shape as data for pre-processing
dummy – value for invalid data
delta_dummy – precesion for dummy assessement
error_model – enum ErrorModel
variance – array of same shape as data for pre-processing
dark_variance – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
workgroup_size – enforce this workgroup size
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
weighted_average (bool) – set to False to use an unweighted mean (similar to legacy) instead of the weighted average. WIP
out_avgint – destination array or pyopencl array for average intensity
out_sem – destination array or pyopencl array for standard deviation (of mean)
out_std – destination array or pyopencl array for standard deviation (of pixels)
out_merged – destination array or pyopencl array for averaged data (float8!)
- Returns:
named-tuple
- kernel_files = ['silx:opencl/doubleword.cl', 'pyfai:openCL/preprocess.cl', 'pyfai:openCL/memset.cl', 'pyfai:openCL/ocl_azim_CSR.cl']
- mapping = {<class 'numpy.int8'>: 's8_to_float', <class 'numpy.uint8'>: 'u8_to_float', <class 'numpy.int16'>: 's16_to_float', <class 'numpy.uint16'>: 'u16_to_float', <class 'numpy.uint32'>: 'u32_to_float', <class 'numpy.int32'>: 's32_to_float'}
- send_buffer(data, dest, checksum=None, workgroup_size=None, convert=True)
Send a numpy array to the device, including the type conversion on the device if possible
- Parameters:
data – numpy array with data
dest – name of the buffer as registered in the class
checksum – Checksum of the data to determine if the data needs to be transfered
workgroup_size – enforce kernel to run with given workgroup size
convert – if True (default) convert dtype on GPU, if false, leave as it is.
- Returns:
the actual buffer where the data were sent
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
- sigma_clip(data, dark=None, dummy=None, delta_dummy=None, variance=None, dark_variance=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, dark_variance_checksum=None, safe=True, error_model=ErrorModel.NO, normalization_factor=1.0, cutoff=4.0, cycle=5, out_avgint=None, out_sem=None, out_std=None, out_merged=None)
Perform a sigma-clipping iterative filter within each along each row. see the doc of scipy.stats.sigmaclip for more descriptions.
If the error model is “azimuthal”: the variance is the variance within a bin, which is refined at each iteration, can be costly !
Else, the error is propagated according to:
\[signal = (raw - dark) variance = variance + dark_variance normalization = normalization_factor*(flat * solidangle * polarization * absortoption) count = number of pixel contributing\]Integration is performed using the CSR representation of the look-up table on all arrays: signal, variance, normalization and count
- Parameters:
dark – array of same shape as data for pre-processing
dummy – value for invalid data
delta_dummy – precesion for dummy assessement
variance – array of same shape as data for pre-processing
dark_variance – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
error_model – enum ErrorModel
normalization_factor – divide raw signal by this value
cutoff – discard all points with
|value - avg| > cutoff * sigma
. 3-4 is quite commoncycle – perform at maximum this number of cycles. 5 is common.
out_avgint – destination array or pyopencl array for sum of all data
out_sem – destination array or pyopencl array for uncertainty on mean value
out_std – destination array or pyopencl array for uncertainty on pixel value
out_merged – destination array or pyopencl array for averaged data (float8!)
- Returns:
namedtuple with “position intensity error signal variance normalization count”
pyFAI.opencl.azim_hist module
Histogram (atomic-add) based integrator
- class pyFAI.opencl.azim_hist.OCL_Histogram1d(radial, bins, radial_checksum=None, empty=None, unit=None, azimuthal=None, azimuthal_checksum=None, mask=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
Bases:
OpenclProcessing
Class in charge of performing histogram calculation in OpenCL using atomic_add
It also performs the preprocessing using the preproc kernel
- BLOCK_SIZE = 32
- __init__(radial, bins, radial_checksum=None, empty=None, unit=None, azimuthal=None, azimuthal_checksum=None, mask=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
- Parameters:
radial – array with the radial position of every single pixel. Same as image size
bins – number of bins on which to histogram
checksum – pre-calculated checksum of the radial array to prevent re-calculating it :)
empty – value to be assigned to bins without contribution from any pixel
unit – just a place_holder for the units of radial array.
azimuthal – array with the azimuthal position, same size as radial
azimuthal_checksum – Checksum of the azimuthal array
mask – Array with the mask, 0 for valid values, anything for masked pixels, same size as radial
ctx – actual working context, left to None for automatic initialization from device type or platformid/deviceid
devicetype – type of device, can be “CPU”, “GPU”, “ACC” or “ALL”
platformid – integer with the platform_identifier, as given by clinfo
deviceid – Integer with the device identifier, as given by clinfo
block_size – preferred workgroup size, may vary depending on the outpcome of the compilation
profile – switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower)
- buffers = [BufferDescription(name='output4', size=4, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='radial', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='azimuthal', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='tmp', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image_raw', size=1, dtype=<class 'numpy.int64'>, flags=4), BufferDescription(name='image', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='variance', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark_variance', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='flat', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='polarization', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='solidangle', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='absorption', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='mask', size=1, dtype=<class 'numpy.int8'>, flags=4)]
- compile_kernels(kernel_file=None)
Call the OpenCL compiler
- Parameters:
kernel_file – path to the kernel (by default use the one in the resources directory)
- integrate(data, dark=None, dummy=None, delta_dummy=None, error_model=ErrorModel.NO, variance=None, dark_variance=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, weighted_average=True, radial_range=None, azimuth_range=None, histo_signal=None, histo_variance=None, histo_normalization=None, histo_normalization_sq=None, histo_count=None, intensity=None, std=None, sem=None)
Performing azimuthal integration, the preprocessing is:
\[Signal= (data - dark) Variance= (variance + dark_variance) Normalization= (normalization_factor * flat * solidangle * polarization * absorption) Count= 1 per valid pixel\]Integration is performed using the histograms (based on atomic adds
- Parameters:
dark – array of same shape as data for pre-processing
dummy – value for invalid data
delta_dummy – precesion for dummy assessement
error_model – set to “poisson” assume variance is data (minimum 1)
variance – array of same shape as data for pre-processing
dark_variance – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
weighted_average (bool) – set to False to use an unweighted mean (similar to legacy) instead of the weighted average.
radial_range – provide lower and upper bound for radial array
azimuth_range – provide lower and upper bound for azimuthal array
histo_signal – destination array or pyopencl array for sum of signals
histo_normalization – destination array or pyopencl array for sum of normalization
histo_normalization_sq – destination array or pyopencl array for sum of normalization squared
histo_count – destination array or pyopencl array for counting pixels
intensity – destination PyOpenCL array for integrated intensity
std – destination PyOpenCL array for standard deviation
sem – destination PyOpenCL array for standard error of the mean
- Returns:
bin_positions, averaged data, histogram of signal, histogram of variance, histogram of normalization, count of pixels
- kernel_files = ['silx:opencl/doubleword.cl', 'pyfai:openCL/preprocess.cl', 'pyfai:openCL/ocl_histo.cl']
- mapping = {<class 'numpy.int8'>: 's8_to_float', <class 'numpy.uint8'>: 'u8_to_float', <class 'numpy.int16'>: 's16_to_float', <class 'numpy.uint16'>: 'u16_to_float', <class 'numpy.uint32'>: 'u32_to_float', <class 'numpy.int32'>: 's32_to_float'}
- send_buffer(data, dest, checksum=None)
Send a numpy array to the device, including the cast on the device if possible
- Parameters:
data – numpy array with data
dest – name of the buffer as registered in the class
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
- class pyFAI.opencl.azim_hist.OCL_Histogram2d(radial, azimuthal, bins_radial, bins_azimuthal, radial_checksum=None, azimuthal_checksum=None, empty=None, unit=None, mask=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
Bases:
OCL_Histogram1d
Class in charge of performing histogram calculation in OpenCL using atomic_add
It also performs the preprocessing using the preproc kernel
- BLOCK_SIZE = 32
- __init__(radial, azimuthal, bins_radial, bins_azimuthal, radial_checksum=None, azimuthal_checksum=None, empty=None, unit=None, mask=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
- Parameters:
radial – array with the radial position of every single pixel. Same as image size
azimuthal – array with the azimuthal position of every single pixel. Same as image size
bins_radial – number of bins on which to histogram is calculated in radial direction
bins_azimuthal – number of bins on which to histogram is calculated in azimuthal direction
radial_checksum – pre-calculated checksum of the position array to prevent re-calculating it :)
azimuthal_checksum – pre-calculated checksum of the position array to prevent re-calculating it :)
empty – value to be assigned to bins without contribution from any pixel
ctx – actual working context, left to None for automatic initialization from device type or platformid/deviceid
devicetype – type of device, can be “CPU”, “GPU”, “ACC” or “ALL”
platformid – integer with the platform_identifier, as given by clinfo
deviceid – Integer with the device identifier, as given by clinfo
block_size – preferred workgroup size, may vary depending on the outpcome of the compilation
profile – switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower)
- buffers = [BufferDescription(name='output4', size=4, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='radial', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='azimuthal', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='image_raw', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='image', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='variance', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark_variance', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='flat', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='polarization', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='solidangle', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='absorption', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='mask', size=1, dtype=<class 'numpy.int8'>, flags=4)]
- integrate(data, dark=None, dummy=None, delta_dummy=None, error_model=ErrorModel.NO, variance=None, dark_variance=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, weighted_average=True, radial_range=None, azimuthal_range=None, histo_signal=None, histo_variance=None, histo_normalization=None, histo_count=None, histo_normalization_sq=None, intensity=None, std=None, sem=None)
Performing azimuthal integration, the preprocessing is:
\[Signal= (data - dark) Variance= (variance + dark_variance) Normalization= (normalization_factor * flat * solidangle * polarization * absorption) Count= 1 per valid pixel\]Integration is performed using the histograms (based on atomic adds
- Parameters:
dark – array of same shape as data for pre-processing
dummy – value for invalid data
delta_dummy – precesion for dummy assessement
variance – array of same shape as data for pre-processing
dark_variance – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
weighted_average (bool) – set to False to use an unweighted mean (similar to legacy) instead of the weighted average.
radial_range – provide lower and upper bound for radial array
azimuth_range – provide lower and upper bound for azimuthal array
histo_signal – destination array or pyopencl array for sum of signals
histo_normalization – destination array or pyopencl array for sum of normalization
histo_normalization_sq – destination PyOpenCL array or pyopencl array for sum of normalization squared
histo_count – destination PyOpenCL array or pyopencl array for counting pixels
intensity – destination PyOpenCL array for integrated intensity
std – destination PyOpenCL array for standard deviation
sem – destination PyOpenCL array for standard error of the mean
- Returns:
bin_positions, averaged data, histogram of signal, histogram of variance, histogram of normalization, count of pixels
- kernel_files = ['silx:opencl/doubleword.cl', 'pyfai:openCL/preprocess.cl', 'pyfai:openCL/ocl_histo.cl']
- mapping = {<class 'numpy.int8'>: 's8_to_float', <class 'numpy.uint8'>: 'u8_to_float', <class 'numpy.int16'>: 's16_to_float', <class 'numpy.uint16'>: 'u16_to_float', <class 'numpy.uint32'>: 'u32_to_float', <class 'numpy.int32'>: 's32_to_float'}
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
pyFAI.opencl.azim_lut module
- class pyFAI.opencl.azim_lut.OCL_LUT_Integrator(lut, image_size, checksum=None, empty=None, unit=None, bin_centers=None, azim_centers=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
Bases:
OpenclProcessing
Class in charge of doing a sparse-matrix multiplication in OpenCL using the LUT representation of the matrix. It also performs the preprocessing using the preproc kernel
- BLOCK_SIZE = 32
- __init__(lut, image_size, checksum=None, empty=None, unit=None, bin_centers=None, azim_centers=None, mask_checksum=None, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
Constructor of the OCL_LUT_Integrator class
- Parameters:
lut – array of int32 - float32 with shape (nbins, lut_size) with indexes and coefficients
image_size – Expected image size: image.size
checksum – pre-calculated checksum of the LUT to prevent re-calculating it :)
empty – value to be assigned to bins without contribution from any pixel
unit – Storage for the unit related to the LUT
bin_centers – the radial position of the bin_center, place_holder
azim_centers – the radial position of the bin_center, place_holder
mask_checksum – placeholder for the checksum of the mask
ctx – actual working context, left to None for automatic initialization from device type or platformid/deviceid
devicetype – type of device, can be “CPU”, “GPU”, “ACC” or “ALL”
platformid – integer with the platform_identifier, as given by clinfo
deviceid – Integer with the device identifier, as given by clinfo
block_size – preferred workgroup size, may vary depending on the outpcome of the compilation
profile – switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower)
- buffers = [BufferDescription(name='output', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='output4', size=4, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='tmp', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image_raw', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='variance', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark_variance', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='flat', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='polarization', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='solidangle', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='absorption', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='mask', size=1, dtype=<class 'numpy.int8'>, flags=4)]
- property check_mask
- property checksum
- compile_kernels(kernel_file=None)
Call the OpenCL compiler :param kernel_file: path to the kernel (by default use the one in the resources directory)
- integrate(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, coef_power=1, out_merged=None, out_sum_data=None, out_sum_count=None)
Before performing azimuthal integration, the preprocessing is:
\[data = (data - dark) / (flat * solidangle * polarization * absorption)\]Integration is performed using the LUT representation of the look-up table
- Parameters:
dark – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
coef_power – set to 2 for variance propagation, leave to 1 for mean calculation
out_merged – destination array or pyopencl array for averaged data
out_sum_data – destination array or pyopencl array for sum of all data
out_sum_count – destination array or pyopencl array for sum of the number of pixels
- Returns:
averaged data, weighted histogram, unweighted histogram
- integrate_legacy(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, preprocess_only=False, safe=True, normalization_factor=1.0, coef_power=1, out_merged=None, out_sum_data=None, out_sum_count=None)
Before performing azimuthal integration, the preprocessing is:
\[data = (data - dark) / (flat * solidangle * polarization * absorption)\]Integration is performed using the LUT representation of the look-up table
- Parameters:
dark – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
coef_power – set to 2 for variance propagation, leave to 1 for mean calculation
out_merged – destination array or pyopencl array for averaged data
out_sum_data – destination array or pyopencl array for sum of all data
out_sum_count – destination array or pyopencl array for sum of the number of pixels
- Returns:
averaged data, weighted histogram, unweighted histogram
- integrate_ng(data, dark=None, dummy=None, delta_dummy=None, error_model=ErrorModel.NO, variance=None, dark_variance=None, flat=None, solidangle=None, polarization=None, absorption=None, dark_checksum=None, flat_checksum=None, solidangle_checksum=None, polarization_checksum=None, absorption_checksum=None, dark_variance_checksum=None, safe=True, normalization_factor=1.0, weighted_average=True, out_avgint=None, out_sem=None, out_std=None, out_merged=None)
Before performing azimuthal integration with proper variance propagation, the preprocessing is:
\[signal = (raw - dark) variance = variance + dark_variance normalization = normalization_factor*(flat * solidangle * polarization * absortoption) count = number of pixel contributing\]Integration is performed using the LUT representation of the look-up table on all arrays: signal, variance, normalization and count
- Parameters:
dark – array of same shape as data for pre-processing
dummy – value for invalid data
delta_dummy – precesion for dummy assessement
error_model – select the ErrorModel (defined in enum), use POISSON to enforce variance=signal
variance – array of same shape as data for pre-processing
dark_variance – array of same shape as data for pre-processing
flat – array of same shape as data for pre-processing
solidangle – array of same shape as data for pre-processing
polarization – array of same shape as data for pre-processing
dark_checksum – CRC32 checksum of the given array
flat_checksum – CRC32 checksum of the given array
solidangle_checksum – CRC32 checksum of the given array
polarization_checksum – CRC32 checksum of the given array
safe – if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
preprocess_only – return the dark subtracted; flat field & solidangle & polarization corrected image, else
normalization_factor – divide raw signal by this value
weighted_average (bool) – set to False to use an unweighted mean (similar to legacy) instead of the weighted average. WIP
out_avgint – destination array or pyopencl array for average intensity
out_sem – destination array or pyopencl array for standard deviation (of mean)
out_std – destination array or pyopencl array for standard deviation (of pixels)
out_merged – destination array or pyopencl array for averaged data (float8!)
- Returns:
large namedtuple with out_avgint, out_sem, out_merged …
- kernel_files = ['silx:opencl/doubleword.cl', 'pyfai:openCL/preprocess.cl', 'pyfai:openCL/memset.cl', 'pyfai:openCL/ocl_azim_LUT.cl']
- mapping = {<class 'numpy.int8'>: 's8_to_float', <class 'numpy.uint8'>: 'u8_to_float', <class 'numpy.int16'>: 's16_to_float', <class 'numpy.uint16'>: 'u16_to_float', <class 'numpy.uint32'>: 'u32_to_float', <class 'numpy.int32'>: 's32_to_float'}
- send_buffer(data, dest, checksum=None)
Send a numpy array to the device, including the cast on the device if possible
- Parameters:
data – numpy array with data
dest – name of the buffer as registered in the class
convert – if True (default) convert dtype on GPU, if false, leave as it is.
- Returns:
the actual buffer where the data were sent
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
set_kernel_arguments() is a private method, called by configure(). It uses the dictionary _cl_kernel_args. Note that by default, since TthRange is disabled, the integration kernels have tth_min_max tied to the tthRange argument slot. When setRange is called it replaces that argument with tthRange low and upper bounds. When unsetRange is called, the argument slot is reset to tth_min_max.
pyFAI.opencl.preproc module
OpenCL implementation of the preproc module
- class pyFAI.opencl.preproc.OCL_Preproc(image_size=None, image_dtype=None, image=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, mask=None, dummy=None, delta_dummy=None, empty=None, split_result=False, calc_variance=False, error_model=ErrorModel.NO, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=32, profile=False)
Bases:
OpenclProcessing
OpenCL class for pre-processing … mainly for demonstration
- __init__(image_size=None, image_dtype=None, image=None, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, mask=None, dummy=None, delta_dummy=None, empty=None, split_result=False, calc_variance=False, error_model=ErrorModel.NO, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=32, profile=False)
- Parameters:
image_size – (int) number of element of the input image
image_dtype – dtype of the input image
image – retrieve image_size and image_dtype from template
dark – dark current image as numpy array
flat – flat field image as numpy array
solidangle – solid angle image as numpy array
absorption – absorption image as numpy array
mask – array of int8 with 0 where the data are valid
dummy – value of impossible values: dynamic mask
delta_dummy – precision for dummy values
empty – value to be assigned to pixel without contribution (i.e masked)
split_result – return the result a tuple: data, [variance], normalization, so the last dim becomes 2 or 3, can be also 4 for full error propagation
calc_variance – report the result as data, variance, normalization
error_model – default error-model to be used
ctx – actual working context, left to None for automatic initialization from device type or platformid/deviceid
devicetype – type of device, can be “CPU”, “GPU”, “ACC” or “ALL”
platformid – integer with the platform_identifier, as given by clinfo
deviceid – Integer with the device identifier, as given by clinfo
block_size – preferred workgroup size, may vary depending on the outpcome of the compilation
profile – switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slower)
- buffers = [BufferDescription(name='output', size=4, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='image_raw', size=8, dtype=<class 'numpy.uint8'>, flags=1), BufferDescription(name='temp', size=4, dtype=<class 'numpy.uint8'>, flags=1), BufferDescription(name='variance', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark', size=1, dtype=<class 'numpy.float32'>, flags=1), BufferDescription(name='dark_variance', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='flat', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='polarization', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='solidangle', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='absorption', size=1, dtype=<class 'numpy.float32'>, flags=4), BufferDescription(name='mask', size=1, dtype=<class 'numpy.int8'>, flags=4)]
- compile_kernels(kernel_files=None, compile_options=None)
Call the OpenCL compiler
- Parameters:
kernel_files – list of path to the kernel (by default use the one declared in the class)
- property delta_dummy
- property dummy
- property empty
- kernel_files = ['pyfai:openCL/preprocess.cl']
- mapping = {<class 'numpy.int8'>: 's8_to_float', <class 'numpy.uint8'>: 'u8_to_float', <class 'numpy.int16'>: 's16_to_float', <class 'numpy.uint16'>: 'u16_to_float', <class 'numpy.uint32'>: 'u32_to_float', <class 'numpy.int32'>: 's32_to_float'}
- process(image, dark=None, variance=None, dark_variance=None, normalization_factor=1.0, error_model=None, split_result=None, apply_normalization=False, out=None)
Perform the pixel-wise operation of the array
- Parameters:
raw – numpy array with the input image
dark – numpy array with the dark-current image
variance – numpy array with the variance of input image
dark_variance – numpy array with the variance of dark-current image
normalization_factor – divide the result by this
error_model – set to “poisson” to set variance=signal (minimum 1). None uses the default from constructor
apply_normalization – correct (directly) the raw signal & variance with normalization, WIP
out – output buffer to save a malloc
- Returns:
array with processed data, may be an array of (data,variance,normalization) depending on class initialization
- send_buffer(data, dest, convert=True)
Send a numpy array to the device
- Parameters:
data – numpy array with data
dest – name of the buffer as registered in the class.
convert – if True (default) convert dtype on GPU, if false, leave as it is in buffer named dest_raw
- Returns:
the destination buffer/array
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
- pyFAI.opencl.preproc.preproc(raw, dark=None, flat=None, solidangle=None, polarization=None, absorption=None, mask=None, dummy=None, delta_dummy=None, normalization_factor=1.0, empty=None, split_result=False, variance=None, dark_variance=None, error_model=ErrorModel.NO, apply_normalization=False, dtype=<class 'numpy.float32'>, out=None)
Common preprocessing step, implemented using OpenCL. May be inefficient
- Parameters:
data – raw value, as a numpy array, 1D or 2D
mask – array non null where data should be ignored
dummy – value of invalid data
delta_dummy – precision for invalid data
dark – array containing the value of the dark noise, to be subtracted
flat – Array containing the flatfield image. It is also checked for dummies if relevant.
solidangle – the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
polarization – Correction for polarization of the incident beam
absorption – Correction for absorption in the sensor volume
normalization_factor – final value is divided by this
empty – value to be given for empty pixels
split_result – set to true to separate numerator from denominator and return an array of float2 or float3 (with variance)
variance – provide an estimation of the variance, enforce split_result=True and return an float3 array with variance in second position.
error_model – set to POISSONIAN to assume variance=signal
apply_normalization – correct (directly) the raw signal & variance with normalization, WIP
dtype – dtype for all processing
out – output buffer to save a malloc
All calculation are performed in single precision floating point (32 bits).
NaN are always considered as invalid values
if neither empty nor dummy is provided, empty pixels are 0. Empty pixels are always zero in “split_result” mode
Split result:
When set to False, i.e the default, the pixel-wise operation is: I = (raw - dark)/(flat * solidangle * polarization * absorption) Invalid pixels are set to the dummy or empty value.
When split_ressult is set to True, each result result is a float2 or a float3 (with an additional value for the variance) as such:
I = [(raw - dark), (variance), (flat * solidangle * polarization * absorption)]
Empty pixels will have all their 2 or 3 values to 0 (and not to dummy or empty value)
If error_model is set to poissonian, the variance is evaluated as (raw + dark) minimum (1)
pyFAI.opencl.sort module
Module for 2D sort based on OpenCL for median filtering and Bragg/amorphous separation on GPU.
- class pyFAI.opencl.sort.Separator(npt_height=512, npt_width=1024, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
Bases:
OpenclProcessing
Implementation of sort, median filter and trimmed-mean in pyopencl
- DUMMY = -3.4028235e+38
- __init__(npt_height=512, npt_width=1024, ctx=None, devicetype='all', platformid=None, deviceid=None, block_size=None, profile=False)
- Parameters:
ctx – context
block_size – 1 on macOSX on CPU
profile – turn on profiling
- allocate_buffers(*arg, **kwarg)
Allocate OpenCL buffers required for a specific configuration
Note that an OpenCL context also requires some memory, as well as Event and other OpenCL functionalities which cannot and are not taken into account here. The memory required by a context varies depending on the device. Typical for GTX580 is 65Mb but for a 9300m is ~15Mb In addition, a GPU will always have at least 3-5Mb of memory in use. Unfortunately, OpenCL does NOT have a built-in way to check the actual free memory on a device, only the total memory.
- filter_horizontal(data, dummy=None, quantile=0.5)
Sort the data along the vertical axis (azimuthal)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
quantile –
- Returns:
pyopencl array
- filter_vertical(data, dummy=None, quantile=0.5)
Sort the data along the vertical axis (azimuthal)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
quantile –
- Returns:
pyopencl array
- kernel_files = ['silx:opencl/doubleword.cl', 'pyfai:openCL/bitonic.cl', 'pyfai:openCL/separate.cl', 'pyfai:openCL/sigma_clip.cl']
- mean_std_horizontal(data, dummy=None)
calculates the mean and std along a row
- mean_std_vertical(data, dummy=None)
calculates the mean and std along a column, column size has to be multiple of 8 and <8192
- set_kernel_arguments()
Tie arguments of OpenCL kernel-functions to the actual kernels
set_kernel_arguments() is a private method, called by configure(). It uses the dictionary _cl_kernel_args.
Note that by default, since TthRange is disabled, the integration kernels have tth_min_max tied to the tthRange argument slot.
When setRange is called it replaces that argument with tthRange low and upper bounds. When unsetRange is called, the argument slot is reset to tth_min_max.
- sigma_clip_horizontal(data, sigma_lo=3, sigma_hi=None, max_iter=5, dummy=None)
calculates iterative sigma-clipped mean and std per row. column size has to be multiple of 8 and <8192
- sigma_clip_vertical(data, sigma_lo=3, sigma_hi=None, max_iter=5, dummy=None)
calculates iterative sigma-clipped mean and std per column. column size has to be multiple of 8 and <8192
- sort_horizontal(data, dummy=None)
Sort the data along the horizontal axis (radial)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
- Returns:
pyopencl array
- sort_vertical(data, dummy=None)
Sort the data along the vertical axis (azimuthal)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
- Returns:
pyopencl array
- trimmed_mean_horizontal(data, dummy=None, quantiles=(0.5, 0.5))
Perform a trimmed mean (mean without the extremes) After sorting the data along the vertical axis (azimuthal)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
quantile –
- Returns:
pyopencl array
- trimmed_mean_vertical(data, dummy=None, quantiles=(0.5, 0.5))
Perform a trimmed mean (mean without the extremes) After sorting the data along the vertical axis (azimuthal)
- Parameters:
data – numpy or pyopencl array
dummy – dummy value
quantile –
- Returns:
pyopencl array
Module contents
Contains all OpenCL implementation.
- pyFAI.opencl.dtype_converter(dtype)
convert a numpy dtype as a int8
- pyFAI.opencl.get_x87_volatile_option(ctx)