Source code for silx.opencl.sift.alignment

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Sift implementation in Python + OpenCL
#             https://github.com/silx-kit/silx
#
#    Copyright (C) 2013-2018  European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.

"""
Contains classes for image alignment on a reference images.
"""

from __future__ import division, print_function, with_statement

__authors__ = ["Jérôme Kieffer", "Pierre Paleo"]
__contact__ = "jerome.kieffer@esrf.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "09/02/2018"
__status__ = "production"

import os
import gc
from threading import Semaphore
import numpy

from ..common import ocl, pyopencl, kernel_workgroup_size
from ..processing import OpenclProcessing
from ..utils import calc_size, get_opencl_code
from .utils import matching_correction
import logging
logger = logging.getLogger(__name__)

from .match import MatchPlan
from .plan import SiftPlan

try:
    import feature
except ImportError:
    feature = None


def arrow_start(kplist):
    # x_ref = kplist.x
    # y_ref = kplist.y
    angle_ref = kplist.angle
    scale_ref = kplist.scale
    x_ref2 = kplist.x + scale_ref * numpy.cos(angle_ref)
    y_ref2 = kplist.y + scale_ref * numpy.sin(angle_ref)
    return x_ref2, y_ref2


def transform_pts(matrix, offset, x, y):
    nx = -offset[1] + y * matrix[1, 0] + x * matrix[1, 1]
    ny = -offset[0] + x * matrix[0, 1] + y * matrix[0, 0]
    return nx, ny


[docs]class LinearAlign(OpenclProcessing): """Align images on a reference image based on an afine transformation (bi-linear + offset) """ kernel_files = {"transform": 128} def __init__(self, image, mask=None, extra=0, init_sigma=None, ctx=None, devicetype="all", platformid=None, deviceid=None, block_size=None, profile=False): """ Constructor of the class :param image: reference image on which other image should be aligned :param mask: masked out region of the image :param devicetype: Kind of preferred devce :param profile:collect profiling information ? :param device: 2-tuple of integer. see clinfo :param max_workgroup_size: limit the workgroup size :param ROI: Region of interest: to be implemented :param extra: extra space around the image, can be an integer, or a 2 tuple in YX convention: TODO! :param init_sigma: blurring width, you should have good reasons to modify the 1.6 default value... """ OpenclProcessing.__init__(self, ctx=ctx, devicetype=devicetype, platformid=platformid, deviceid=deviceid, block_size=block_size, profile=profile) self.ref = numpy.ascontiguousarray(image) self.cl_mem = {} self.shape = image.shape if len(self.shape) == 3: self.RGB = True self.shape = self.shape[:2] elif len(self.shape) == 2: self.RGB = False else: raise RuntimeError("Unable to process image of shape %s" % (tuple(self.shape,))) if "__len__" not in dir(extra): self.extra = (int(extra), int(extra)) else: self.extra = extra[:2] self.outshape = tuple(i + 2 * j for i, j in zip(self.shape, self.extra)) self.mask = mask self.sift = SiftPlan(template=image, ctx=self.ctx, profile=self.profile, block_size=self.block_size, init_sigma=init_sigma) self.ref_kp = self.sift.keypoints(image) # TODO: move to SIFT if self.mask is not None: kpx = numpy.round(self.ref_kp.x).astype(numpy.int32) kpy = numpy.round(self.ref_kp.y).astype(numpy.int32) masked = self.mask[(kpy, kpx)].astype(bool) logger.warning("Reducing keypoint list from %i to %i because of the ROI" % (self.ref_kp.size, masked.sum())) self.ref_kp = self.ref_kp[masked] self.match = MatchPlan(ctx=self.ctx, profile=self.profile, block_size=self.block_size) # Allocate reference keypoints on the GPU within match context: self.cl_mem["ref_kp_gpu"] = pyopencl.array.to_device(self.match.queue, self.ref_kp) # TODO optimize match so that the keypoint2 can be optional self.fill_value = 0 self.wg = {} self.compile_kernels() self._allocate_buffers() self.sem = Semaphore() self.relative_transfo = None def __del__(self): """ Destructor: release all buffers """ self._free_kernels() self._free_buffers() self.queue = None self.ctx = None gc.collect() def _allocate_buffers(self): """ All buffers are allocated here """ if self.RGB: self.cl_mem["input"] = pyopencl.array.empty(self.queue, shape=self.shape + (3,), dtype=numpy.uint8) self.cl_mem["output"] = pyopencl.array.empty(self.queue, shape=self.outshape + (3,), dtype=numpy.uint8) else: self.cl_mem["input"] = pyopencl.array.empty(self.queue, shape=self.shape, dtype=numpy.float32) self.cl_mem["output"] = pyopencl.array.empty(self.queue, shape=self.outshape, dtype=numpy.float32) self.cl_mem["matrix"] = pyopencl.array.empty(self.queue, shape=(2, 2), dtype=numpy.float32) self.cl_mem["offset"] = pyopencl.array.empty(self.queue, shape=(1, 2), dtype=numpy.float32) def _free_buffers(self): """ free all memory allocated on the device """ for buffer_name in self.cl_mem: if self.cl_mem[buffer_name] is not None: try: del self.cl_mem[buffer_name] self.cl_mem[buffer_name] = None except pyopencl.LogicError: logger.error("Error while freeing buffer %s" % buffer_name)
[docs] def compile_kernels(self): """ Call the OpenCL compiler """ kernel_src = [os.path.join("sift", kernel) for kernel in self.kernel_files] OpenclProcessing.compile_kernels(self, kernel_src) bs = min(self.kernel_files["transform"], min(self.check_workgroup_size(kn) for kn in self.kernels.get_kernels())) if self.block_size is not None: bs = min(self.block_size, bs) device = self.ctx.devices[0] if bs > 32: wgm = (32, bs // 32) if bs >= 256: wgr = (4, bs // 32, 8) else: wgr = (4, 8, bs // 32) elif bs > 4: wgm = (bs // 4, 4) wgr = (4, bs // 4, 1) else: wgm = (bs, 1) wgr = (bs, 1, 1) size_per_dim = device.max_work_item_sizes self.wg["transform_RGB"] = tuple(min(i, j) for i, j in zip(wgr, size_per_dim)) self.wg["transform"] = tuple(min(i, j) for i, j in zip(wgm, size_per_dim))
def _free_kernels(self): """ free all kernels """ self.program = None
[docs] def align(self, img, shift_only=False, return_all=False, double_check=False, relative=False, orsa=False): """ Align image on reference image :param img: numpy array containing the image to align to reference :param return_all: return in addition ot the image, keypoints, matching keypoints, and transformations as a dict :param relative: update reference keypoints with those from current image to perform relative alignment :return: aligned image, or all informations, or None if no matching keypoints """ logger.debug("ref_keypoints: %s" % self.ref_kp.size) if self.RGB: data = numpy.ascontiguousarray(img, numpy.uint8) else: data = numpy.ascontiguousarray(img, numpy.float32) with self.sem: cpy = pyopencl.enqueue_copy(self.queue, self.cl_mem["input"].data, data) if self.profile: self.events.append(("Copy H->D", cpy)) cpy.wait() kp = self.sift.keypoints(self.cl_mem["input"]) # print("ref %s img %s" % (self.cl_mem["ref_kp_gpu"].shape, kp.shape)) logger.debug("mod image keypoints: %s" % kp.size) raw_matching = self.match.match(self.cl_mem["ref_kp_gpu"], kp, raw_results=True) # print(raw_matching.max(axis=0)) matching = numpy.recarray(shape=raw_matching.shape, dtype=MatchPlan.dtype_kp) len_match = raw_matching.shape[0] if len_match == 0: logger.warning("No matching keypoints") return None matching[:, 0] = self.ref_kp[raw_matching[:, 0]] matching[:, 1] = kp[raw_matching[:, 1]] if orsa: if feature: matching = feature.sift_orsa(matching, self.shape, 1) else: logger.warning("feature is not available. No ORSA filtering") if (len_match < 3 * 6) or (shift_only): # 3 points per DOF if shift_only: logger.debug("Shift Only mode: Common keypoints: %s" % len_match) else: logger.warning("Shift Only mode: Common keypoints: %s" % len_match) dx = matching[:, 1].x - matching[:, 0].x dy = matching[:, 1].y - matching[:, 0].y matrix = numpy.identity(2, dtype=numpy.float32) offset = numpy.array([+numpy.median(dy), +numpy.median(dx)], numpy.float32) else: logger.debug("Common keypoints: %s" % len_match) transform_matrix = matching_correction(matching) offset = numpy.array([transform_matrix[5], transform_matrix[2]], dtype=numpy.float32) matrix = numpy.empty((2, 2), dtype=numpy.float32) matrix[0, 0], matrix[0, 1] = transform_matrix[4], transform_matrix[3] matrix[1, 0], matrix[1, 1] = transform_matrix[1], transform_matrix[0] if double_check and (len_match >= 3 * 6): # and abs(matrix - numpy.identity(2)).max() > 0.1: logger.warning("Validating keypoints, %s,%s" % (matrix, offset)) dx = matching[:, 1].x - matching[:, 0].x dy = matching[:, 1].y - matching[:, 0].y dangle = matching[:, 1].angle - matching[:, 0].angle dscale = numpy.log(matching[:, 1].scale / matching[:, 0].scale) distance = numpy.sqrt(dx * dx + dy * dy) outlayer = numpy.zeros(distance.shape, numpy.int8) outlayer += abs((distance - distance.mean()) / distance.std()) > 4 outlayer += abs((dangle - dangle.mean()) / dangle.std()) > 4 outlayer += abs((dscale - dscale.mean()) / dscale.std()) > 4 outlayersum = outlayer.sum() if outlayersum > 0 and not numpy.isinf(outlayersum): matching2 = matching[outlayer == 0] transform_matrix = matching_correction(matching2) offset = numpy.array([transform_matrix[5], transform_matrix[2]], dtype=numpy.float32) matrix = numpy.empty((2, 2), dtype=numpy.float32) matrix[0, 0], matrix[0, 1] = transform_matrix[4], transform_matrix[3] matrix[1, 0], matrix[1, 1] = transform_matrix[1], transform_matrix[0] if relative: # update stable part to perform a relative alignment self.ref_kp = kp if self.mask is not None: kpx = numpy.round(self.ref_kp.x).astype(numpy.int32) kpy = numpy.round(self.ref_kp.y).astype(numpy.int32) masked = self.mask[(kpy, kpx)].astype(bool) logger.warning("Reducing keypoint list from %i to %i because of the ROI" % (self.ref_kp.size, masked.sum())) self.ref_kp = self.ref_kp[masked] self.cl_mem["ref_kp_gpu"] = pyopencl.array.to_device(self.match.queue, self.ref_kp) transfo = numpy.zeros((3, 3), dtype=numpy.float64) transfo[:2, :2] = matrix transfo[0, 2] = offset[0] transfo[1, 2] = offset[1] transfo[2, 2] = 1 if self.relative_transfo is None: self.relative_transfo = transfo else: self.relative_transfo = numpy.dot(transfo, self.relative_transfo) matrix = numpy.ascontiguousarray(self.relative_transfo[:2, :2], dtype=numpy.float32) offset = numpy.ascontiguousarray(self.relative_transfo[:2, 2], dtype=numpy.float32) cpy1 = pyopencl.enqueue_copy(self.queue, self.cl_mem["matrix"].data, matrix) cpy2 = pyopencl.enqueue_copy(self.queue, self.cl_mem["offset"].data, offset) if self.profile: self.events += [("Copy matrix", cpy1), ("Copy offset", cpy2)] if self.RGB: shape = (4, self.shape[1], self.shape[0]) kname = "transform_RGB" else: shape = self.shape[1], self.shape[0] kname = "transform" transform = self.kernels.get_kernel(kname) ev = transform(self.queue, calc_size(shape, self.wg[kname]), self.wg[kname], self.cl_mem["input"].data, self.cl_mem["output"].data, self.cl_mem["matrix"].data, self.cl_mem["offset"].data, numpy.int32(self.shape[1]), numpy.int32(self.shape[0]), numpy.int32(self.outshape[1]), numpy.int32(self.outshape[0]), self.sift.cl_mem["min"].get()[0], numpy.int32(1)) if self.profile: self.events += [(kname, ev)] result = self.cl_mem["output"].get() if return_all: # corr = numpy.dot(matrix, numpy.vstack((matching[:, 1].y, matching[:, 1].x))).T - \ # offset.T - numpy.vstack((matching[:, 0].y, matching[:, 0].x)).T corr = numpy.dot(matrix, numpy.vstack((matching[:, 0].y, matching[:, 0].x))).T + offset.T - numpy.vstack((matching[:, 1].y, matching[:, 1].x)).T rms = numpy.sqrt((corr * corr).sum(axis=-1).mean()) # Todo: calculate the RMS of deplacement and return it: return {"result": result, "keypoint": kp, "matching": matching, "offset": offset, "matrix": matrix, "rms": rms} return result
__call__ = align
[docs] def log_profile(self): """ If we are in debugging mode, prints out all timing for every single OpenCL call """ t = 0.0 # orient = 0.0 # descr = 0.0 if self.profile: for e in self.events: if "__len__" in dir(e) and len(e) >= 2: et = 1e-6 * (e[1].profile.end - e[1].profile.start) print("%50s:\t%.3fms" % (e[0], et)) t += et