Source code for silx.gui.plot.items.histogram

# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2017-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions::t
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module provides the :class:`Histogram` item of the :class:`Plot`.
"""

__authors__ = ["H. Payno", "T. Vincent"]
__license__ = "MIT"
__date__ = "28/08/2018"

import logging

import numpy
from collections import OrderedDict, namedtuple
try:
    from collections import abc
except ImportError:  # Python2 support
    import collections as abc

from .core import (Item, AlphaMixIn, BaselineMixIn, ColorMixIn, FillMixIn,
                   LineMixIn, YAxisMixIn, ItemChangedType)

_logger = logging.getLogger(__name__)


def _computeEdges(x, histogramType):
    """Compute the edges from a set of xs and a rule to generate the edges

    :param x: the x value of the curve to transform into an histogram
    :param histogramType: the type of histogram we wan't to generate.
         This define the way to center the histogram values compared to the
         curve value. Possible values can be::

         - 'left'
         - 'right'
         - 'center'

    :return: the edges for the given x and the histogramType
    """
    # for now we consider that the spaces between xs are constant
    edges = x.copy()
    if histogramType is 'left':
        width = 1
        if len(x) > 1:
            width = x[1] - x[0]
        edges = numpy.append(x[0] - width, edges)
    if histogramType is 'center':
        edges = _computeEdges(edges, 'right')
        widths = (edges[1:] - edges[0:-1]) / 2.0
        widths = numpy.append(widths, widths[-1])
        edges = edges - widths
    if histogramType is 'right':
        width = 1
        if len(x) > 1:
            width = x[-1] - x[-2]
        edges = numpy.append(edges, x[-1] + width)

    return edges


def _getHistogramCurve(histogram, edges):
    """Returns the x and y value of a curve corresponding to the histogram

    :param numpy.ndarray histogram: The values of the histogram
    :param numpy.ndarray edges: The bin edges of the histogram
    :return: a tuple(x, y) which contains the value of the curve to use
             to display the histogram
    """
    assert len(histogram) + 1 == len(edges)
    x = numpy.empty(len(histogram) * 2, dtype=edges.dtype)
    y = numpy.empty(len(histogram) * 2, dtype=histogram.dtype)
    # Make a curve with stairs
    x[:-1:2] = edges[:-1]
    x[1::2] = edges[1:]
    y[:-1:2] = histogram
    y[1::2] = histogram

    return x, y


# TODO: Yerror, test log scale
[docs]class Histogram(Item, AlphaMixIn, ColorMixIn, FillMixIn, LineMixIn, YAxisMixIn, BaselineMixIn): """Description of an histogram""" _DEFAULT_Z_LAYER = 1 """Default overlay layer for histograms""" _DEFAULT_SELECTABLE = False """Default selectable state for histograms""" _DEFAULT_LINEWIDTH = 1. """Default line width of the histogram""" _DEFAULT_LINESTYLE = '-' """Default line style of the histogram""" _DEFAULT_BASELINE = None def __init__(self): Item.__init__(self) AlphaMixIn.__init__(self) BaselineMixIn.__init__(self) ColorMixIn.__init__(self) FillMixIn.__init__(self) LineMixIn.__init__(self) YAxisMixIn.__init__(self) self._histogram = () self._edges = () self._setBaseline(Histogram._DEFAULT_BASELINE) def _addBackendRenderer(self, backend): """Update backend renderer""" values, edges, baseline = self.getData(copy=False) if values.size == 0: return None # No data to display, do not add renderer if values.size == 0: return None # No data to display, do not add renderer to backend x, y = _getHistogramCurve(values, edges) # Filter-out values <= 0 plot = self.getPlot() if plot is not None: xPositive = plot.getXAxis()._isLogarithmic() yPositive = plot.getYAxis()._isLogarithmic() else: xPositive = False yPositive = False if xPositive or yPositive: clipped = numpy.logical_or( (x <= 0) if xPositive else False, (y <= 0) if yPositive else False) # Make a copy and replace negative points by NaN x = numpy.array(x, dtype=numpy.float) y = numpy.array(y, dtype=numpy.float) x[clipped] = numpy.nan y[clipped] = numpy.nan return backend.addCurve(x, y, color=self.getColor(), symbol='', linestyle=self.getLineStyle(), linewidth=self.getLineWidth(), yaxis=self.getYAxis(), xerror=None, yerror=None, z=self.getZValue(), fill=self.isFill(), alpha=self.getAlpha(), baseline=baseline, symbolsize=1) def _getBounds(self): values, edges, baseline = self.getData(copy=False) plot = self.getPlot() if plot is not None: xPositive = plot.getXAxis()._isLogarithmic() yPositive = plot.getYAxis()._isLogarithmic() else: xPositive = False yPositive = False if xPositive or yPositive: values = numpy.array(values, copy=True, dtype=numpy.float) if xPositive: # Replace edges <= 0 by NaN and corresponding values by NaN clipped_edges = (edges <= 0) edges = numpy.array(edges, copy=True, dtype=numpy.float) edges[clipped_edges] = numpy.nan clipped_values = numpy.logical_or(clipped_edges[:-1], clipped_edges[1:]) else: clipped_values = numpy.zeros_like(values, dtype=numpy.bool) if yPositive: # Replace values <= 0 by NaN, do not modify edges clipped_values = numpy.logical_or(clipped_values, values <= 0) values[clipped_values] = numpy.nan if yPositive: return (numpy.nanmin(edges), numpy.nanmax(edges), numpy.nanmin(values), numpy.nanmax(values)) else: # No log scale on y axis, include 0 in bounds return (numpy.nanmin(edges), numpy.nanmax(edges), min(0, numpy.nanmin(values)), max(0, numpy.nanmax(values))) def setVisible(self, visible): """Set visibility of item. :param bool visible: True to display it, False otherwise """ visible = bool(visible) # TODO hackish data range implementation if self.isVisible() != visible: plot = self.getPlot() if plot is not None: plot._invalidateDataRange() super(Histogram, self).setVisible(visible)
[docs] def getValueData(self, copy=True): """The values of the histogram :param copy: True (Default) to get a copy, False to use internal representation (do not modify!) :returns: The bin edges of the histogram :rtype: numpy.ndarray """ return numpy.array(self._histogram, copy=copy)
[docs] def getBinEdgesData(self, copy=True): """The bin edges of the histogram (number of histogram values + 1) :param copy: True (Default) to get a copy, False to use internal representation (do not modify!) :returns: The bin edges of the histogram :rtype: numpy.ndarray """ return numpy.array(self._edges, copy=copy)
[docs] def getData(self, copy=True): """Return the histogram values, bin edges and baseline :param copy: True (Default) to get a copy, False to use internal representation (do not modify!) :returns: (N histogram value, N+1 bin edges) :rtype: 2-tuple of numpy.nadarray """ return (self.getValueData(copy), self.getBinEdgesData(copy), self.getBaseline(copy))
[docs] def setData(self, histogram, edges, align='center', baseline=None, copy=True): """Set the histogram values and bin edges. :param numpy.ndarray histogram: The values of the histogram. :param numpy.ndarray edges: The bin edges of the histogram. If histogram and edges have the same length, the bin edges are computed according to the align parameter. :param str align: In case histogram values and edges have the same length N, the N+1 bin edges are computed according to the alignment in: 'center' (default), 'left', 'right'. :param baseline: histogram baseline :type baseline: Union[None,float,numpy.ndarray] :param bool copy: True make a copy of the data (default), False to use provided arrays. """ histogram = numpy.array(histogram, copy=copy) edges = numpy.array(edges, copy=copy) assert histogram.ndim == 1 assert edges.ndim == 1 assert edges.size in (histogram.size, histogram.size + 1) assert align in ('center', 'left', 'right') if histogram.size == 0: # No data self._histogram = () self._edges = () else: if edges.size == histogram.size: # Compute true bin edges edges = _computeEdges(edges, align) # Check that bin edges are monotonic edgesDiff = numpy.diff(edges) assert numpy.all(edgesDiff >= 0) or numpy.all(edgesDiff <= 0) # manage baseline if (isinstance(baseline, abc.Iterable)): baseline = numpy.array(baseline) if baseline.size == histogram.size: new_baseline = numpy.empty(baseline.shape[0] * 2) for i_value, value in enumerate(baseline): new_baseline[i_value*2:i_value*2+2] = value baseline = new_baseline self._histogram = histogram self._edges = edges self._alignement = align self._setBaseline(baseline) if self.isVisible(): plot = self.getPlot() if plot is not None: plot._invalidateDataRange() self._updated(ItemChangedType.DATA)
def getAlignment(self): """ :return: histogram alignement. Value in ('center', 'left', 'right'). """ return self._alignement def _revertComputeEdges(self, x, histogramType): """Compute the edges from a set of xs and a rule to generate the edges :param x: the x value of the curve to transform into an histogram :param histogramType: the type of histogram we wan't to generate. This define the way to center the histogram values compared to the curve value. Possible values can be:: - 'left' - 'right' - 'center' :return: the edges for the given x and the histogramType """ # for now we consider that the spaces between xs are constant edges = x.copy() if histogramType is 'left': return edges[1:] if histogramType is 'center': edges = (edges[1:] + edges[:-1]) / 2.0 if histogramType is 'right': width = 1 if len(x) > 1: width = x[-1] + x[-2] edges = edges[:-1] return edges