Source code for silx.gui.colors

# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2015-2020 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module provides API to manage colors.
"""

from __future__ import absolute_import

__authors__ = ["T. Vincent", "H.Payno"]
__license__ = "MIT"
__date__ = "29/01/2019"

import numpy
import logging
import collections
import warnings

from silx.gui import qt
from silx.gui.utils import blockSignals
from silx.math.combo import min_max
from silx.math import colormap as _colormap
from silx.utils.exceptions import NotEditableError
from silx.utils import deprecation
from silx.resources import resource_filename as _resource_filename


_logger = logging.getLogger(__file__)

try:
    import silx.gui.utils.matplotlib  # noqa  Initalize matplotlib
    from matplotlib import cm as _matplotlib_cm
    from matplotlib.pyplot import colormaps as _matplotlib_colormaps
except ImportError:
    _logger.info("matplotlib not available, only embedded colormaps available")
    _matplotlib_cm = None
    _matplotlib_colormaps = None


_COLORDICT = {}
"""Dictionary of common colors."""

_COLORDICT['b'] = _COLORDICT['blue'] = '#0000ff'
_COLORDICT['r'] = _COLORDICT['red'] = '#ff0000'
_COLORDICT['g'] = _COLORDICT['green'] = '#00ff00'
_COLORDICT['k'] = _COLORDICT['black'] = '#000000'
_COLORDICT['w'] = _COLORDICT['white'] = '#ffffff'
_COLORDICT['pink'] = '#ff66ff'
_COLORDICT['brown'] = '#a52a2a'
_COLORDICT['orange'] = '#ff9900'
_COLORDICT['violet'] = '#6600ff'
_COLORDICT['gray'] = _COLORDICT['grey'] = '#a0a0a4'
# _COLORDICT['darkGray'] = _COLORDICT['darkGrey'] = '#808080'
# _COLORDICT['lightGray'] = _COLORDICT['lightGrey'] = '#c0c0c0'
_COLORDICT['y'] = _COLORDICT['yellow'] = '#ffff00'
_COLORDICT['m'] = _COLORDICT['magenta'] = '#ff00ff'
_COLORDICT['c'] = _COLORDICT['cyan'] = '#00ffff'
_COLORDICT['darkBlue'] = '#000080'
_COLORDICT['darkRed'] = '#800000'
_COLORDICT['darkGreen'] = '#008000'
_COLORDICT['darkBrown'] = '#660000'
_COLORDICT['darkCyan'] = '#008080'
_COLORDICT['darkYellow'] = '#808000'
_COLORDICT['darkMagenta'] = '#800080'
_COLORDICT['transparent'] = '#00000000'


# FIXME: It could be nice to expose a functional API instead of that attribute
COLORDICT = _COLORDICT


_LUT_DESCRIPTION = collections.namedtuple("_LUT_DESCRIPTION", ["source", "cursor_color", "preferred"])
"""Description of a LUT for internal purpose."""


_AVAILABLE_LUTS = collections.OrderedDict([
    ('gray', _LUT_DESCRIPTION('builtin', 'pink', True)),
    ('reversed gray', _LUT_DESCRIPTION('builtin', 'pink', True)),
    ('red', _LUT_DESCRIPTION('builtin', 'green', True)),
    ('green', _LUT_DESCRIPTION('builtin', 'pink', True)),
    ('blue', _LUT_DESCRIPTION('builtin', 'yellow', True)),
    ('viridis', _LUT_DESCRIPTION('resource', 'pink', True)),
    ('cividis', _LUT_DESCRIPTION('resource', 'pink', True)),
    ('magma', _LUT_DESCRIPTION('resource', 'green', True)),
    ('inferno', _LUT_DESCRIPTION('resource', 'green', True)),
    ('plasma', _LUT_DESCRIPTION('resource', 'green', True)),
    ('temperature', _LUT_DESCRIPTION('builtin', 'pink', True)),
    ('jet', _LUT_DESCRIPTION('matplotlib', 'pink', True)),
    ('hsv', _LUT_DESCRIPTION('matplotlib', 'black', True)),
])
"""Description for internal porpose of all the default LUT provided by the library."""


DEFAULT_MIN_LIN = 0
"""Default min value if in linear normalization"""
DEFAULT_MAX_LIN = 1
"""Default max value if in linear normalization"""


[docs]def rgba(color, colorDict=None): """Convert color code '#RRGGBB' and '#RRGGBBAA' to a tuple (R, G, B, A) of floats. It also supports RGB(A) from uint8 in [0, 255], float in [0, 1], and QColor as color argument. :param str color: The color to convert :param dict colorDict: A dictionary of color name conversion to color code :returns: RGBA colors as floats in [0., 1.] :rtype: tuple """ if colorDict is None: colorDict = _COLORDICT if hasattr(color, 'getRgbF'): # QColor support color = color.getRgbF() values = numpy.asarray(color).ravel() if values.dtype.kind in 'iuf': # integer or float # Color is an array assert len(values) in (3, 4) # Convert from integers in [0, 255] to float in [0, 1] if values.dtype.kind in 'iu': values = values / 255. # Clip to [0, 1] values[values < 0.] = 0. values[values > 1.] = 1. if len(values) == 3: return values[0], values[1], values[2], 1. else: return tuple(values) # We assume color is a string if not color.startswith('#'): color = colorDict[color] assert len(color) in (7, 9) and color[0] == '#' r = int(color[1:3], 16) / 255. g = int(color[3:5], 16) / 255. b = int(color[5:7], 16) / 255. a = int(color[7:9], 16) / 255. if len(color) == 9 else 1. return r, g, b, a
[docs]def greyed(color, colorDict=None): """Convert color code '#RRGGBB' and '#RRGGBBAA' to a grey color (R, G, B, A). It also supports RGB(A) from uint8 in [0, 255], float in [0, 1], and QColor as color argument. :param str color: The color to convert :param dict colorDict: A dictionary of color name conversion to color code :returns: RGBA colors as floats in [0., 1.] :rtype: tuple """ r, g, b, a = rgba(color=color, colorDict=colorDict) g = 0.21 * r + 0.72 * g + 0.07 * b return g, g, g, a
[docs]def asQColor(color): """Convert color code '#RRGGBB' and '#RRGGBBAA' to a `qt.QColor`. It also supports RGB(A) from uint8 in [0, 255], float in [0, 1], and QColor as color argument. :param str color: The color to convert :rtype: qt.QColor """ color = rgba(color) return qt.QColor.fromRgbF(*color)
[docs]def cursorColorForColormap(colormapName): """Get a color suitable for overlay over a colormap. :param str colormapName: The name of the colormap. :return: Name of the color. :rtype: str """ description = _AVAILABLE_LUTS.get(colormapName, None) if description is not None: color = description.cursor_color if color is not None: return color return 'black'
# Colormap loader _COLORMAP_CACHE = {} """Cache already used colormaps as name: color LUT""" def _arrayToRgba8888(colors): """Convert colors from a numpy array using float (0..1) int or uint (0..255) to uint8 RGBA. :param numpy.ndarray colors: Array of float int or uint colors to convert :return: colors as uint8 :rtype: numpy.ndarray """ assert len(colors.shape) == 2 assert colors.shape[1] in (3, 4) if colors.dtype == numpy.uint8: pass elif colors.dtype.kind == 'f': # Each bin is [N, N+1[ except the last one: [255, 256] colors = numpy.clip(colors.astype(numpy.float64) * 256, 0., 255.) colors = colors.astype(numpy.uint8) elif colors.dtype.kind in 'iu': colors = numpy.clip(colors, 0, 255) colors = colors.astype(numpy.uint8) if colors.shape[1] == 3: tmp = numpy.empty((len(colors), 4), dtype=numpy.uint8) tmp[:, 0:3] = colors tmp[:, 3] = 255 colors = tmp return colors def _createColormapLut(name): """Returns the color LUT corresponding to a colormap name :param str name: Name of the colormap to load :returns: Corresponding table of colors :rtype: numpy.ndarray :raise ValueError: If no colormap corresponds to name """ description = _AVAILABLE_LUTS.get(name) use_mpl = False if description is not None: if description.source == "builtin": # Build colormap LUT lut = numpy.zeros((256, 4), dtype=numpy.uint8) lut[:, 3] = 255 if name == 'gray': lut[:, :3] = numpy.arange(256, dtype=numpy.uint8).reshape(-1, 1) elif name == 'reversed gray': lut[:, :3] = numpy.arange(255, -1, -1, dtype=numpy.uint8).reshape(-1, 1) elif name == 'red': lut[:, 0] = numpy.arange(256, dtype=numpy.uint8) elif name == 'green': lut[:, 1] = numpy.arange(256, dtype=numpy.uint8) elif name == 'blue': lut[:, 2] = numpy.arange(256, dtype=numpy.uint8) elif name == 'temperature': # Red lut[128:192, 0] = numpy.arange(2, 255, 4, dtype=numpy.uint8) lut[192:, 0] = 255 # Green lut[:64, 1] = numpy.arange(0, 255, 4, dtype=numpy.uint8) lut[64:192, 1] = 255 lut[192:, 1] = numpy.arange(252, -1, -4, dtype=numpy.uint8) # Blue lut[:64, 2] = 255 lut[64:128, 2] = numpy.arange(254, 0, -4, dtype=numpy.uint8) else: raise RuntimeError("Built-in colormap not implemented") return lut elif description.source == "resource": # Load colormap LUT colors = numpy.load(_resource_filename("gui/colormaps/%s.npy" % name)) # Convert to uint8 and add alpha channel lut = _arrayToRgba8888(colors) return lut elif description.source == "matplotlib": use_mpl = True else: raise RuntimeError("Internal LUT source '%s' unsupported" % description.source) # Here it expect a matplotlib LUTs if use_mpl: # matplotlib is mandatory if _matplotlib_cm is None: raise ValueError("The colormap '%s' expect matplotlib, but matplotlib is not installed" % name) if _matplotlib_cm is not None: # Try to load with matplotlib colormap = _matplotlib_cm.get_cmap(name) lut = colormap(numpy.linspace(0, 1, colormap.N, endpoint=True)) lut = _arrayToRgba8888(lut) return lut raise ValueError("Unknown colormap '%s'" % name) def _getColormap(name): """Returns the color LUT corresponding to a colormap name :param str name: Name of the colormap to load :returns: Corresponding table of colors :rtype: numpy.ndarray :raise ValueError: If no colormap corresponds to name """ name = str(name) if name not in _COLORMAP_CACHE: lut = _createColormapLut(name) _COLORMAP_CACHE[name] = lut return _COLORMAP_CACHE[name] # Normalizations class _NormalizationMixIn: """Colormap normalization mix-in class""" DEFAULT_RANGE = 0, 1 """Fallback for (vmin, vmax)""" def isValid(self, value): """Check if a value is in the valid range for this normalization. Override in subclass. :param Union[float,numpy.ndarray] value: :rtype: Union[bool,numpy.ndarray] """ if isinstance(value, collections.abc.Iterable): return numpy.ones_like(value, dtype=numpy.bool_) else: return True def autoscale(self, data, mode): """Returns range for given data and autoscale mode. :param Union[None,numpy.ndarray] data: :param str mode: Autoscale mode, see :class:`Colormap` :returns: Range as (min, max) :rtype: Tuple[float,float] """ data = None if data is None else numpy.array(data, copy=False) if data is None or data.size == 0: return self.DEFAULT_RANGE if mode == Colormap.MINMAX: vmin, vmax = self.autoscaleMinMax(data) elif mode == Colormap.STDDEV3: dmin, dmax = self.autoscaleMinMax(data) stdmin, stdmax = self.autoscaleMean3Std(data) if dmin is None: vmin = stdmin elif stdmin is None: vmin = dmin else: vmin = max(dmin, stdmin) if dmax is None: vmax = stdmax elif stdmax is None: vmax = dmax else: vmax = min(dmax, stdmax) else: raise ValueError('Unsupported mode: %s' % mode) # Check returned range and handle fallbacks if vmin is None or not numpy.isfinite(vmin): vmin = self.DEFAULT_RANGE[0] if vmax is None or not numpy.isfinite(vmax): vmax = self.DEFAULT_RANGE[1] if vmax < vmin: vmax = vmin return float(vmin), float(vmax) def autoscaleMinMax(self, data): """Autoscale using min/max :param numpy.ndarray data: :returns: (vmin, vmax) :rtype: Tuple[float,float] """ data = data[self.isValid(data)] if data.size == 0: return None, None result = min_max(data, min_positive=False, finite=True) return result.minimum, result.maximum def autoscaleMean3Std(self, data): """Autoscale using mean+/-3std This implementation only works for normalization that do NOT use the data range. Override this method for normalization using the range. :param numpy.ndarray data: :returns: (vmin, vmax) :rtype: Tuple[float,float] """ # Use [0, 1] as data range for normalization not using range normdata = self.apply(data, 0., 1.) if normdata.dtype.kind == 'f': # Replaces inf by NaN normdata[numpy.isfinite(normdata) == False] = numpy.nan if normdata.size == 0: # Fallback return None, None with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) # Ignore nanmean "Mean of empty slice" warning and # nanstd "Degrees of freedom <= 0 for slice" warning mean, std = numpy.nanmean(normdata), numpy.nanstd(normdata) return self.revert(mean - 3 * std, 0., 1.), self.revert(mean + 3 * std, 0., 1.) class _LinearNormalizationMixIn(_NormalizationMixIn): """Colormap normalization mix-in class specific to autoscale taken from initial range""" def autoscaleMean3Std(self, data): """Autoscale using mean+/-3std Do the autoscale on the data itself, not the normalized data. :param numpy.ndarray data: :returns: (vmin, vmax) :rtype: Tuple[float,float] """ if data.dtype.kind == 'f': # Replaces inf by NaN data = numpy.array(data, copy=True) # Work on a copy data[numpy.isfinite(data) == False] = numpy.nan if data.size == 0: # Fallback return None, None with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) # Ignore nanmean "Mean of empty slice" warning and # nanstd "Degrees of freedom <= 0 for slice" warning mean, std = numpy.nanmean(data), numpy.nanstd(data) return mean - 3 * std, mean + 3 * std class _LinearNormalization(_colormap.LinearNormalization, _LinearNormalizationMixIn): """Linear normalization""" def __init__(self): _colormap.LinearNormalization.__init__(self) _LinearNormalizationMixIn.__init__(self) class _LogarithmicNormalization(_colormap.LogarithmicNormalization, _NormalizationMixIn): """Logarithm normalization""" DEFAULT_RANGE = 1, 10 def __init__(self): _colormap.LogarithmicNormalization.__init__(self) _NormalizationMixIn.__init__(self) def isValid(self, value): return value > 0. def autoscaleMinMax(self, data): result = min_max(data, min_positive=True, finite=True) return result.min_positive, result.maximum class _SqrtNormalization(_colormap.SqrtNormalization, _NormalizationMixIn): """Square root normalization""" DEFAULT_RANGE = 0, 1 def __init__(self): _colormap.SqrtNormalization.__init__(self) _NormalizationMixIn.__init__(self) def isValid(self, value): return value >= 0. class _GammaNormalization(_colormap.PowerNormalization, _LinearNormalizationMixIn): """Gamma correction normalization: Linear normalization to [0, 1] followed by power normalization. :param gamma: Gamma correction factor """ def __init__(self, gamma): _colormap.PowerNormalization.__init__(self, gamma) _LinearNormalizationMixIn.__init__(self) class _ArcsinhNormalization(_colormap.ArcsinhNormalization, _NormalizationMixIn): """Inverse hyperbolic sine normalization""" def __init__(self): _colormap.ArcsinhNormalization.__init__(self) _NormalizationMixIn.__init__(self)
[docs]class Colormap(qt.QObject): """Description of a colormap If no `name` nor `colors` are provided, a default gray LUT is used. :param str name: Name of the colormap :param tuple colors: optional, custom colormap. Nx3 or Nx4 numpy array of RGB(A) colors, either uint8 or float in [0, 1]. If 'name' is None, then this array is used as the colormap. :param str normalization: Normalization: 'linear' (default) or 'log' :param vmin: Lower bound of the colormap or None for autoscale (default) :type vmin: Union[None, float] :param vmax: Upper bounds of the colormap or None for autoscale (default) :type vmax: Union[None, float] """ LINEAR = 'linear' """constant for linear normalization""" LOGARITHM = 'log' """constant for logarithmic normalization""" SQRT = 'sqrt' """constant for square root normalization""" GAMMA = 'gamma' """Constant for gamma correction normalization""" ARCSINH = 'arcsinh' """constant for inverse hyperbolic sine normalization""" _BASIC_NORMALIZATIONS = { LINEAR: _LinearNormalization(), LOGARITHM: _LogarithmicNormalization(), SQRT: _SqrtNormalization(), ARCSINH: _ArcsinhNormalization(), } """Normalizations without parameters""" NORMALIZATIONS = LINEAR, LOGARITHM, SQRT, GAMMA, ARCSINH """Tuple of managed normalizations""" MINMAX = 'minmax' """constant for autoscale using min/max data range""" STDDEV3 = 'stddev3' """constant for autoscale using mean +/- 3*std(data) with a clamp on min/max of the data""" AUTOSCALE_MODES = (MINMAX, STDDEV3) """Tuple of managed auto scale algorithms""" sigChanged = qt.Signal() """Signal emitted when the colormap has changed.""" _DEFAULT_NAN_COLOR = 255, 255, 255, 0 def __init__(self, name=None, colors=None, normalization=LINEAR, vmin=None, vmax=None, autoscaleMode=MINMAX): qt.QObject.__init__(self) self._editable = True self.__gamma = 2.0 # Default NaN color: fully transparent white self.__nanColor = numpy.array(self._DEFAULT_NAN_COLOR, dtype=numpy.uint8) assert normalization in Colormap.NORMALIZATIONS assert autoscaleMode in Colormap.AUTOSCALE_MODES if normalization is Colormap.LOGARITHM: if (vmin is not None and vmin < 0) or (vmax is not None and vmax < 0): m = "Unsuported vmin (%s) and/or vmax (%s) given for a log scale." m += ' Autoscale will be performed.' m = m % (vmin, vmax) _logger.warning(m) vmin = None vmax = None self._name = None self._colors = None if colors is not None and name is not None: deprecation.deprecated_warning("Argument", name="silx.gui.plot.Colors", reason="name and colors can't be used at the same time", since_version="0.10.0", skip_backtrace_count=1) colors = None if name is not None: self.setName(name) # And resets colormap LUT elif colors is not None: self.setColormapLUT(colors) else: # Default colormap is grey self.setName("gray") self._normalization = str(normalization) self._autoscaleMode = str(autoscaleMode) self._vmin = float(vmin) if vmin is not None else None self._vmax = float(vmax) if vmax is not None else None
[docs] def setFromColormap(self, other): """Set this colormap using information from the `other` colormap. :param ~silx.gui.colors.Colormap other: Colormap to use as reference. """ if not self.isEditable(): raise NotEditableError('Colormap is not editable') if self == other: return with blockSignals(self): name = other.getName() if name is not None: self.setName(name) else: self.setColormapLUT(other.getColormapLUT()) self.setNaNColor(other.getNaNColor()) self.setNormalization(other.getNormalization()) self.setGammaNormalizationParameter( other.getGammaNormalizationParameter()) self.setAutoscaleMode(other.getAutoscaleMode()) self.setVRange(*other.getVRange()) self.setEditable(other.isEditable()) self.sigChanged.emit()
[docs] def getNColors(self, nbColors=None): """Returns N colors computed by sampling the colormap regularly. :param nbColors: The number of colors in the returned array or None for the default value. The default value is the size of the colormap LUT. :type nbColors: int or None :return: 2D array of uint8 of shape (nbColors, 4) :rtype: numpy.ndarray """ # Handle default value for nbColors if nbColors is None: return numpy.array(self._colors, copy=True) else: nbColors = int(nbColors) colormap = self.copy() colormap.setNormalization(Colormap.LINEAR) colormap.setVRange(vmin=0, vmax=nbColors - 1) colors = colormap.applyToData( numpy.arange(nbColors, dtype=numpy.int32)) return colors
[docs] def getName(self): """Return the name of the colormap :rtype: str """ return self._name
[docs] def setName(self, name): """Set the name of the colormap to use. :param str name: The name of the colormap. At least the following names are supported: 'gray', 'reversed gray', 'temperature', 'red', 'green', 'blue', 'jet', 'viridis', 'magma', 'inferno', 'plasma'. """ name = str(name) if self._name == name: return if self.isEditable() is False: raise NotEditableError('Colormap is not editable') if name not in self.getSupportedColormaps(): raise ValueError("Colormap name '%s' is not supported" % name) self._name = name self._colors = _getColormap(self._name) self.sigChanged.emit()
[docs] def getColormapLUT(self, copy=True): """Return the list of colors for the colormap or None if not set. This returns None if the colormap was set with :meth:`setName`. Use :meth:`getNColors` to get the colormap LUT for any colormap. :param bool copy: If true a copy of the numpy array is provided :return: the list of colors for the colormap or None if not set :rtype: numpy.ndarray or None """ if self._name is None: return numpy.array(self._colors, copy=copy) else: return None
[docs] def setColormapLUT(self, colors): """Set the colors of the colormap. :param numpy.ndarray colors: the colors of the LUT. If float, it is converted from [0, 1] to uint8 range. Otherwise it is casted to uint8. .. warning: this will set the value of name to None """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') assert colors is not None colors = numpy.array(colors, copy=False) if colors.shape == (): raise TypeError("An array is expected for 'colors' argument. '%s' was found." % type(colors)) assert len(colors) != 0 assert colors.ndim >= 2 colors.shape = -1, colors.shape[-1] self._colors = _arrayToRgba8888(colors) self._name = None self.sigChanged.emit()
[docs] def getNaNColor(self): """Returns the color to use for Not-A-Number floating point value. :rtype: QColor """ return qt.QColor(*self.__nanColor)
[docs] def setNaNColor(self, color): """Set the color to use for Not-A-Number floating point value. :param color: RGB(A) color to use for NaN values :type color: QColor, str, tuple of uint8 or float in [0., 1.] """ color = (numpy.array(rgba(color)) * 255).astype(numpy.uint8) if not numpy.array_equal(self.__nanColor, color): self.__nanColor = color self.sigChanged.emit()
[docs] def getNormalization(self): """Return the normalization of the colormap. See :meth:`setNormalization` for returned values. :return: the normalization of the colormap :rtype: str """ return self._normalization
[docs] def setNormalization(self, norm): """Set the colormap normalization. Accepted normalizations: 'log', 'linear', 'sqrt' :param str norm: the norm to set """ assert norm in self.NORMALIZATIONS if self.isEditable() is False: raise NotEditableError('Colormap is not editable') self._normalization = str(norm) self.sigChanged.emit()
[docs] def setGammaNormalizationParameter(self, gamma: float) -> None: """Set the gamma correction parameter. Only used for gamma correction normalization. :param float gamma: :raise ValueError: If gamma is not valid """ if gamma < 0. or not numpy.isfinite(gamma): raise ValueError("Gamma value not supported") if gamma != self.__gamma: self.__gamma = gamma self.sigChanged.emit()
[docs] def getGammaNormalizationParameter(self) -> float: """Returns the gamma correction parameter value. :rtype: float """ return self.__gamma
[docs] def getAutoscaleMode(self): """Return the autoscale mode of the colormap ('minmax' or 'stddev3') :rtype: str """ return self._autoscaleMode
[docs] def setAutoscaleMode(self, mode): """Set the autoscale mode: either 'minmax' or 'stddev3' :param str mode: the mode to set """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') assert mode in self.AUTOSCALE_MODES if mode != self._autoscaleMode: self._autoscaleMode = mode self.sigChanged.emit()
[docs] def isAutoscale(self): """Return True if both min and max are in autoscale mode""" return self._vmin is None and self._vmax is None
[docs] def getVMin(self): """Return the lower bound of the colormap :return: the lower bound of the colormap :rtype: float or None """ return self._vmin
[docs] def setVMin(self, vmin): """Set the minimal value of the colormap :param float vmin: Lower bound of the colormap or None for autoscale (default) value) """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') if vmin is not None: if self._vmax is not None and vmin > self._vmax: err = "Can't set vmin because vmin >= vmax. " \ "vmin = %s, vmax = %s" % (vmin, self._vmax) raise ValueError(err) self._vmin = vmin self.sigChanged.emit()
[docs] def getVMax(self): """Return the upper bounds of the colormap or None :return: the upper bounds of the colormap or None :rtype: float or None """ return self._vmax
[docs] def setVMax(self, vmax): """Set the maximal value of the colormap :param float vmax: Upper bounds of the colormap or None for autoscale (default) """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') if vmax is not None: if self._vmin is not None and vmax < self._vmin: err = "Can't set vmax because vmax <= vmin. " \ "vmin = %s, vmax = %s" % (self._vmin, vmax) raise ValueError(err) self._vmax = vmax self.sigChanged.emit()
[docs] def isEditable(self): """ Return if the colormap is editable or not :return: editable state of the colormap :rtype: bool """ return self._editable
[docs] def setEditable(self, editable): """ Set the editable state of the colormap :param bool editable: is the colormap editable """ assert type(editable) is bool self._editable = editable self.sigChanged.emit()
def _getNormalizer(self): """Returns normalizer object""" normalization = self.getNormalization() if normalization == self.GAMMA: return _GammaNormalization(self.getGammaNormalizationParameter()) else: return self._BASIC_NORMALIZATIONS[normalization] def _computeAutoscaleRange(self, data): """Compute the data range which will be used in autoscale mode. :param numpy.ndarray data: The data for which to compute the range :return: (vmin, vmax) range """ return self._getNormalizer().autoscale( data, mode=self.getAutoscaleMode())
[docs] def getColormapRange(self, data=None): """Return (vmin, vmax) the range of the colormap for the given data or item. :param Union[numpy.ndarray,~silx.gui.plot.items.ColormapMixIn] data: The data or item to use for autoscale bounds. :return: (vmin, vmax) corresponding to the colormap applied to data if provided. :rtype: tuple """ vmin = self._vmin vmax = self._vmax assert vmin is None or vmax is None or vmin <= vmax # TODO handle this in setters normalizer = self._getNormalizer() # Handle invalid bounds as autoscale if vmin is not None and not normalizer.isValid(vmin): _logger.info( 'Invalid vmin, switching to autoscale for lower bound') vmin = None if vmax is not None and not normalizer.isValid(vmax): _logger.info( 'Invalid vmax, switching to autoscale for upper bound') vmax = None if vmin is None or vmax is None: # Handle autoscale from .plot.items.core import ColormapMixIn # avoid cyclic import if isinstance(data, ColormapMixIn): min_, max_ = data._getColormapAutoscaleRange(self) # Make sure min_, max_ are not None min_ = normalizer.DEFAULT_RANGE[0] if min_ is None else min_ max_ = normalizer.DEFAULT_RANGE[1] if max_ is None else max_ else: min_, max_ = normalizer.autoscale( data, mode=self.getAutoscaleMode()) if vmin is None: # Set vmin respecting provided vmax vmin = min_ if vmax is None else min(min_, vmax) if vmax is None: vmax = max(max_, vmin) # Handle max_ <= 0 for log scale return vmin, vmax
[docs] def getVRange(self): """Get the bounds of the colormap :rtype: Tuple(Union[float,None],Union[float,None]) :returns: A tuple of 2 values for min and max. Or None instead of float for autoscale """ return self.getVMin(), self.getVMax()
[docs] def setVRange(self, vmin, vmax): """Set the bounds of the colormap :param vmin: Lower bound of the colormap or None for autoscale (default) :param vmax: Upper bounds of the colormap or None for autoscale (default) """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') if vmin is not None and vmax is not None: if vmin > vmax: err = "Can't set vmin and vmax because vmin >= vmax " \ "vmin = %s, vmax = %s" % (vmin, vmax) raise ValueError(err) if self._vmin == vmin and self._vmax == vmax: return self._vmin = vmin self._vmax = vmax self.sigChanged.emit()
def __getitem__(self, item): if item == 'autoscale': return self.isAutoscale() elif item == 'name': return self.getName() elif item == 'normalization': return self.getNormalization() elif item == 'vmin': return self.getVMin() elif item == 'vmax': return self.getVMax() elif item == 'colors': return self.getColormapLUT() elif item == 'autoscaleMode': return self.getAutoscaleMode() else: raise KeyError(item) def _toDict(self): """Return the equivalent colormap as a dictionary (old colormap representation) :return: the representation of the Colormap as a dictionary :rtype: dict """ return { 'name': self._name, 'colors': self.getColormapLUT(), 'vmin': self._vmin, 'vmax': self._vmax, 'autoscale': self.isAutoscale(), 'normalization': self.getNormalization(), 'autoscaleMode': self.getAutoscaleMode(), } def _setFromDict(self, dic): """Set values to the colormap from a dictionary :param dict dic: the colormap as a dictionary """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') name = dic['name'] if 'name' in dic else None colors = dic['colors'] if 'colors' in dic else None if name is not None and colors is not None: if isinstance(colors, int): # Filter out argument which was supported but never used _logger.info("Unused 'colors' from colormap dictionary filterer.") colors = None vmin = dic['vmin'] if 'vmin' in dic else None vmax = dic['vmax'] if 'vmax' in dic else None if 'normalization' in dic: normalization = dic['normalization'] else: warn = 'Normalization not given in the dictionary, ' warn += 'set by default to ' + Colormap.LINEAR _logger.warning(warn) normalization = Colormap.LINEAR if name is None and colors is None: err = 'The colormap should have a name defined or a tuple of colors' raise ValueError(err) if normalization not in Colormap.NORMALIZATIONS: err = 'Given normalization is not recognized (%s)' % normalization raise ValueError(err) autoscaleMode = dic.get('autoscaleMode', Colormap.MINMAX) if autoscaleMode not in Colormap.AUTOSCALE_MODES: err = 'Given autoscale mode is not recognized (%s)' % autoscaleMode raise ValueError(err) # If autoscale, then set boundaries to None if dic.get('autoscale', False): vmin, vmax = None, None if name is not None: self.setName(name) else: self.setColormapLUT(colors) self._vmin = vmin self._vmax = vmax self._autoscale = True if (vmin is None and vmax is None) else False self._normalization = normalization self._autoscaleMode = autoscaleMode self.sigChanged.emit() @staticmethod def _fromDict(dic): colormap = Colormap() colormap._setFromDict(dic) return colormap
[docs] def copy(self): """Return a copy of the Colormap. :rtype: silx.gui.colors.Colormap """ colormap = Colormap(name=self._name, colors=self.getColormapLUT(), vmin=self._vmin, vmax=self._vmax, normalization=self.getNormalization(), autoscaleMode=self.getAutoscaleMode()) colormap.setNaNColor(self.getNaNColor()) colormap.setGammaNormalizationParameter( self.getGammaNormalizationParameter()) colormap.setEditable(self.isEditable()) return colormap
[docs] def applyToData(self, data, reference=None): """Apply the colormap to the data :param Union[numpy.ndarray,~silx.gui.plot.item.ColormapMixIn] data: The data to convert or the item for which to apply the colormap. :param Union[numpy.ndarray,~silx.gui.plot.item.ColormapMixIn,None] reference: The data or item to use as reference to compute autoscale """ if reference is None: reference = data vmin, vmax = self.getColormapRange(reference) if hasattr(data, "getColormappedData"): # Use item's data data = data.getColormappedData(copy=False) return _colormap.cmap( data, self._colors, vmin, vmax, self._getNormalizer(), self.__nanColor)
[docs] @staticmethod def getSupportedColormaps(): """Get the supported colormap names as a tuple of str. The list should at least contain and start by: ('gray', 'reversed gray', 'temperature', 'red', 'green', 'blue', 'viridis', 'magma', 'inferno', 'plasma') :rtype: tuple """ colormaps = set() if _matplotlib_colormaps is not None: colormaps.update(_matplotlib_colormaps()) colormaps.update(_AVAILABLE_LUTS.keys()) colormaps = tuple(cmap for cmap in sorted(colormaps) if cmap not in _AVAILABLE_LUTS.keys()) return tuple(_AVAILABLE_LUTS.keys()) + colormaps
def __str__(self): return str(self._toDict()) def __eq__(self, other): """Compare colormap values and not pointers""" if other is None: return False if not isinstance(other, Colormap): return False if self.getNormalization() != other.getNormalization(): return False if self.getNormalization() == self.GAMMA: delta = self.getGammaNormalizationParameter() - other.getGammaNormalizationParameter() if abs(delta) > 0.001: return False return (self.getName() == other.getName() and self.getAutoscaleMode() == other.getAutoscaleMode() and self.getVMin() == other.getVMin() and self.getVMax() == other.getVMax() and numpy.array_equal(self.getColormapLUT(), other.getColormapLUT()) ) _SERIAL_VERSION = 3
[docs] def restoreState(self, byteArray): """ Read the colormap state from a QByteArray. :param qt.QByteArray byteArray: Stream containing the state :return: True if the restoration sussseed :rtype: bool """ if self.isEditable() is False: raise NotEditableError('Colormap is not editable') stream = qt.QDataStream(byteArray, qt.QIODevice.ReadOnly) className = stream.readQString() if className != self.__class__.__name__: _logger.warning("Classname mismatch. Found %s." % className) return False version = stream.readUInt32() if version not in numpy.arange(1, self._SERIAL_VERSION+1): _logger.warning("Serial version mismatch. Found %d." % version) return False name = stream.readQString() isNull = stream.readBool() if not isNull: vmin = stream.readQVariant() else: vmin = None isNull = stream.readBool() if not isNull: vmax = stream.readQVariant() else: vmax = None normalization = stream.readQString() if normalization == Colormap.GAMMA: gamma = stream.readFloat() else: gamma = None if version == 1: autoscaleMode = Colormap.MINMAX else: autoscaleMode = stream.readQString() if version <= 2: nanColor = self._DEFAULT_NAN_COLOR else: nanColor = stream.readInt32(), stream.readInt32(), stream.readInt32(), stream.readInt32() # emit change event only once old = self.blockSignals(True) try: self.setName(name) self.setNormalization(normalization) self.setAutoscaleMode(autoscaleMode) self.setVRange(vmin, vmax) if gamma is not None: self.setGammaNormalizationParameter(gamma) self.setNaNColor(nanColor) finally: self.blockSignals(old) self.sigChanged.emit() return True
[docs] def saveState(self): """ Save state of the colomap into a QDataStream. :rtype: qt.QByteArray """ data = qt.QByteArray() stream = qt.QDataStream(data, qt.QIODevice.WriteOnly) stream.writeQString(self.__class__.__name__) stream.writeUInt32(self._SERIAL_VERSION) stream.writeQString(self.getName()) stream.writeBool(self.getVMin() is None) if self.getVMin() is not None: stream.writeQVariant(self.getVMin()) stream.writeBool(self.getVMax() is None) if self.getVMax() is not None: stream.writeQVariant(self.getVMax()) stream.writeQString(self.getNormalization()) if self.getNormalization() == Colormap.GAMMA: stream.writeFloat(self.getGammaNormalizationParameter()) stream.writeQString(self.getAutoscaleMode()) nanColor = self.getNaNColor() stream.writeInt32(nanColor.red()) stream.writeInt32(nanColor.green()) stream.writeInt32(nanColor.blue()) stream.writeInt32(nanColor.alpha()) return data
_PREFERRED_COLORMAPS = None """ Tuple of preferred colormap names accessed with :meth:`preferredColormaps`. """
[docs]def preferredColormaps(): """Returns the name of the preferred colormaps. This list is used by widgets allowing to change the colormap like the :class:`ColormapDialog` as a subset of colormap choices. :rtype: tuple of str """ global _PREFERRED_COLORMAPS if _PREFERRED_COLORMAPS is None: # Initialize preferred colormaps default_preferred = [] for name, info in _AVAILABLE_LUTS.items(): if (info.preferred and (info.source != 'matplotlib' or _matplotlib_cm is not None)): default_preferred.append(name) setPreferredColormaps(default_preferred) return tuple(_PREFERRED_COLORMAPS)
[docs]def setPreferredColormaps(colormaps): """Set the list of preferred colormap names. Warning: If a colormap name is not available it will be removed from the list. :param colormaps: Not empty list of colormap names :type colormaps: iterable of str :raise ValueError: if the list of available preferred colormaps is empty. """ supportedColormaps = Colormap.getSupportedColormaps() colormaps = [cmap for cmap in colormaps if cmap in supportedColormaps] if len(colormaps) == 0: raise ValueError("Cannot set preferred colormaps to an empty list") global _PREFERRED_COLORMAPS _PREFERRED_COLORMAPS = colormaps
[docs]def registerLUT(name, colors, cursor_color='black', preferred=True): """Register a custom LUT to be used with `Colormap` objects. It can override existing LUT names. :param str name: Name of the LUT as defined to configure colormaps :param numpy.ndarray colors: The custom LUT to register. Nx3 or Nx4 numpy array of RGB(A) colors, either uint8 or float in [0, 1]. :param bool preferred: If true, this LUT will be displayed as part of the preferred colormaps in dialogs. :param str cursor_color: Color used to display overlay over images using colormap with this LUT. """ description = _LUT_DESCRIPTION('user', cursor_color, preferred=preferred) colors = _arrayToRgba8888(colors) _AVAILABLE_LUTS[name] = description if preferred: # Invalidate the preferred cache global _PREFERRED_COLORMAPS if _PREFERRED_COLORMAPS is not None: if name not in _PREFERRED_COLORMAPS: _PREFERRED_COLORMAPS.append(name) else: # The cache is not yet loaded, it's fine pass # Register the cache as the LUT was already loaded _COLORMAP_CACHE[name] = colors