Source code for silx.gui._glutils.utils

# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2014-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module provides conversion functions between OpenGL and numpy types.
"""

__authors__ = ["T. Vincent"]
__license__ = "MIT"
__date__ = "10/01/2017"

import numpy

from OpenGL.constants import BYTE_SIZES as _BYTE_SIZES
from OpenGL.constants import ARRAY_TO_GL_TYPE_MAPPING as _ARRAY_TO_GL_TYPE_MAPPING


[docs]def sizeofGLType(type_): """Returns the size in bytes of an element of type `type_`""" return _BYTE_SIZES[type_]
[docs]def isSupportedGLType(type_): """Test if a numpy type or dtype can be converted to a GL type.""" return numpy.dtype(type_).char in _ARRAY_TO_GL_TYPE_MAPPING
[docs]def numpyToGLType(type_): """Returns the GL type corresponding the provided numpy type or dtype.""" return _ARRAY_TO_GL_TYPE_MAPPING[numpy.dtype(type_).char]
def segmentTrianglesIntersection(segment, triangles): """Check for segment/triangles intersection. This is based on signed tetrahedron volume comparison. See A. Kensler, A., Shirley, P. Optimizing Ray-Triangle Intersection via Automated Search. Symposium on Interactive Ray Tracing, vol. 0, p33-38 (2006) :param numpy.ndarray segment: Segment end points as a 2x3 array of coordinates :param numpy.ndarray triangles: Nx3x3 array of triangles :return: (triangle indices, segment parameter, barycentric coord) Indices of intersected triangles, "depth" along the segment of the intersection point and barycentric coordinates of intersection point in the triangle. :rtype: List[numpy.ndarray] """ # TODO triangles from vertices + indices # TODO early rejection? e.g., check segment bbox vs triangle bbox segment = numpy.asarray(segment) assert segment.ndim == 2 assert segment.shape == (2, 3) triangles = numpy.asarray(triangles) assert triangles.ndim == 3 assert triangles.shape[1] == 3 # Test line/triangles intersection d = segment[1] - segment[0] t0s0 = segment[0] - triangles[:, 0, :] edge01 = triangles[:, 1, :] - triangles[:, 0, :] edge02 = triangles[:, 2, :] - triangles[:, 0, :] dCrossEdge02 = numpy.cross(d, edge02) t0s0CrossEdge01 = numpy.cross(t0s0, edge01) volume = numpy.sum(dCrossEdge02 * edge01, axis=1) del edge01 subVolumes = numpy.empty((len(triangles), 3), dtype=triangles.dtype) subVolumes[:, 1] = numpy.sum(dCrossEdge02 * t0s0, axis=1) del dCrossEdge02 subVolumes[:, 2] = numpy.sum(t0s0CrossEdge01 * d, axis=1) subVolumes[:, 0] = volume - subVolumes[:, 1] - subVolumes[:, 2] intersect = numpy.logical_or( numpy.all(subVolumes >= 0., axis=1), # All positive numpy.all(subVolumes <= 0., axis=1)) # All negative intersect = numpy.where(intersect)[0] # Indices of intersected triangles # Get barycentric coordinates barycentric = subVolumes[intersect] / volume[intersect].reshape(-1, 1) del subVolumes # Test segment/triangles intersection volAlpha = numpy.sum(t0s0CrossEdge01[intersect] * edge02[intersect], axis=1) t = volAlpha / volume[intersect] # segment parameter of intersected triangles del t0s0CrossEdge01 del edge02 del volAlpha del volume inSegmentMask = numpy.logical_and(t >= 0., t <= 1.) intersect = intersect[inSegmentMask] t = t[inSegmentMask] barycentric = barycentric[inSegmentMask] # Sort intersecting triangles by t indices = numpy.argsort(t) return intersect[indices], t[indices], barycentric[indices]