Source code for silx.io.convert

# coding: utf-8
# /*##########################################################################
# Copyright (C) 2016-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ############################################################################*/
"""This module provides classes and function to convert file formats supported
by *silx* into HDF5 file. Currently, SPEC file and fabio images are the
supported formats.

Read the documentation of :mod:`silx.io.spech5` and :mod:`silx.io.fabioh5` for
information on the structure of the output HDF5 files.

Text strings are written to the HDF5 datasets as variable-length utf-8.

.. warning::

    The output format for text strings changed in silx version 0.7.0.
    Prior to that, text was output as fixed-length ASCII.

    To be on the safe side, when reading back a HDF5 file written with an
    older version of silx, you can test for the presence of a *decode*
    attribute. To ensure that you always work with unicode text::

        >>> import h5py
        >>> h5f = h5py.File("my_scans.h5", "r")
        >>> title = h5f["/68.1/title"]
        >>> if hasattr(title, "decode"):
        ...     title = title.decode()


.. note:: This module has a dependency on the `h5py <http://www.h5py.org/>`_
    library, which is not a mandatory dependency for `silx`. You might need
    to install it if you don't already have it.
"""

__authors__ = ["P. Knobel"]
__license__ = "MIT"
__date__ = "17/07/2018"


import logging

import h5py
import numpy
import six

import silx.io
from silx.io import is_dataset, is_group, is_softlink
from silx.io import fabioh5


_logger = logging.getLogger(__name__)


def _create_link(h5f, link_name, target_name,
                 link_type="soft", overwrite_data=False):
    """Create a link in a HDF5 file

    If member with name ``link_name`` already exists, delete it first or
    ignore link depending on global param ``overwrite_data``.

    :param h5f: :class:`h5py.File` object
    :param link_name: Link path
    :param target_name: Handle for target group or dataset
    :param str link_type: "soft" or "hard"
    :param bool overwrite_data: If True, delete existing member (group,
        dataset or link) with the same name. Default is False.
    """
    if link_name not in h5f:
        _logger.debug("Creating link " + link_name + " -> " + target_name)
    elif overwrite_data:
        _logger.warning("Overwriting " + link_name + " with link to " +
                     target_name)
        del h5f[link_name]
    else:
        _logger.warning(link_name + " already exist. Cannot create link to " +
                     target_name)
        return None

    if link_type == "hard":
        h5f[link_name] = h5f[target_name]
    elif link_type == "soft":
        h5f[link_name] = h5py.SoftLink(target_name)
    else:
        raise ValueError("link_type  must be 'hard' or 'soft'")


def _attr_utf8(attr_value):
    """If attr_value is bytes, make sure we output utf-8

    :param attr_value: String (possibly bytes if PY2)
    :return: Attr ready to be written by h5py as utf8
    """
    if isinstance(attr_value, six.binary_type) or \
       isinstance(attr_value, six.text_type):
        out_attr_value = numpy.array(
            attr_value,
            dtype=h5py.special_dtype(vlen=six.text_type))
    else:
        out_attr_value = attr_value

    return out_attr_value


class Hdf5Writer(object):
    """Converter class to write the content of a data file to a HDF5 file.
    """
    def __init__(self,
                 h5path='/',
                 overwrite_data=False,
                 link_type="soft",
                 create_dataset_args=None,
                 min_size=500):
        """

        :param h5path: Target path where the scan groups will be written
            in the output HDF5 file.
        :param bool overwrite_data:
            See documentation of :func:`write_to_h5`
        :param str link_type: ``"hard"`` or ``"soft"`` (default)
        :param dict create_dataset_args: Dictionary of args you want to pass to
            ``h5py.File.create_dataset``.
            See documentation of :func:`write_to_h5`
        :param int min_size:
            See documentation of :func:`write_to_h5`
        """
        self.h5path = h5path
        if not h5path.startswith("/"):
            # target path must be absolute
            self.h5path = "/" + h5path
        if not self.h5path.endswith("/"):
            self.h5path += "/"

        self._h5f = None
        """h5py.File object, assigned in :meth:`write`"""

        if create_dataset_args is None:
            create_dataset_args = {}
        self.create_dataset_args = create_dataset_args

        self.min_size = min_size

        self.overwrite_data = overwrite_data   # boolean

        self.link_type = link_type
        """'soft' or 'hard' """

        self._links = []
        """List of *(link_path, target_path)* tuples."""

    def write(self, infile, h5f):
        """Do the conversion from :attr:`sfh5` (Spec file) to *h5f* (HDF5)

        All the parameters needed for the conversion have been initialized
        in the constructor.

        :param infile: :class:`SpecH5` object
        :param h5f: :class:`h5py.File` instance
        """
        # Recurse through all groups and datasets to add them to the HDF5
        self._h5f = h5f
        infile.visititems(self.append_member_to_h5, visit_links=True)

        # Handle the attributes of the root group
        root_grp = h5f[self.h5path]
        for key in infile.attrs:
            if self.overwrite_data or key not in root_grp.attrs:
                root_grp.attrs.create(key,
                                      _attr_utf8(infile.attrs[key]))

        # Handle links at the end, when their targets are created
        for link_name, target_name in self._links:
            _create_link(self._h5f, link_name, target_name,
                         link_type=self.link_type,
                         overwrite_data=self.overwrite_data)
        self._links = []

    def append_member_to_h5(self, h5like_name, obj):
        """Add one group or one dataset to :attr:`h5f`"""
        h5_name = self.h5path + h5like_name.lstrip("/")
        if is_softlink(obj):
            # links to be created after all groups and datasets
            h5_target = self.h5path + obj.path.lstrip("/")
            self._links.append((h5_name, h5_target))

        elif is_dataset(obj):
            _logger.debug("Saving dataset: " + h5_name)

            member_initially_exists = h5_name in self._h5f

            if self.overwrite_data and member_initially_exists:
                _logger.warning("Overwriting dataset: " + h5_name)
                del self._h5f[h5_name]

            if self.overwrite_data or not member_initially_exists:
                if isinstance(obj, fabioh5.FrameData) and len(obj.shape) > 2:
                    # special case of multiframe data
                    # write frame by frame to save memory usage low
                    ds = self._h5f.create_dataset(h5_name,
                                                  shape=obj.shape,
                                                  dtype=obj.dtype,
                                                  **self.create_dataset_args)
                    for i, frame in enumerate(obj):
                        ds[i] = frame
                else:
                    # fancy arguments don't apply to small dataset
                    if obj.size < self.min_size:
                        ds = self._h5f.create_dataset(h5_name, data=obj.value)
                    else:
                        ds = self._h5f.create_dataset(h5_name, data=obj.value,
                                                      **self.create_dataset_args)
            else:
                ds = self._h5f[h5_name]

            # add HDF5 attributes
            for key in obj.attrs:
                if self.overwrite_data or key not in ds.attrs:
                    ds.attrs.create(key,
                                    _attr_utf8(obj.attrs[key]))

            if not self.overwrite_data and member_initially_exists:
                _logger.warning("Not overwriting existing dataset: " + h5_name)

        elif is_group(obj):
            if h5_name not in self._h5f:
                _logger.debug("Creating group: " + h5_name)
                grp = self._h5f.create_group(h5_name)
            else:
                grp = self._h5f[h5_name]

            # add HDF5 attributes
            for key in obj.attrs:
                if self.overwrite_data or key not in grp.attrs:
                    grp.attrs.create(key,
                                     _attr_utf8(obj.attrs[key]))


def _is_commonh5_group(grp):
    """Return True if grp is a commonh5 group.
    (h5py.Group objects are not commonh5 groups)"""
    return is_group(grp) and not isinstance(grp, h5py.Group)


[docs]def write_to_h5(infile, h5file, h5path='/', mode="a", overwrite_data=False, link_type="soft", create_dataset_args=None, min_size=500): """Write content of a h5py-like object into a HDF5 file. :param infile: Path of input file, or :class:`commonh5.File` object or :class:`commonh5.Group` object. :param h5file: Path of output HDF5 file or HDF5 file handle (`h5py.File` object) :param str h5path: Target path in HDF5 file in which scan groups are created. Default is root (``"/"``) :param str mode: Can be ``"r+"`` (read/write, file must exist), ``"w"`` (write, existing file is lost), ``"w-"`` (write, fail if exists) or ``"a"`` (read/write if exists, create otherwise). This parameter is ignored if ``h5file`` is a file handle. :param bool overwrite_data: If ``True``, existing groups and datasets can be overwritten, if ``False`` they are skipped. This parameter is only relevant if ``file_mode`` is ``"r+"`` or ``"a"``. :param str link_type: *"soft"* (default) or *"hard"* :param dict create_dataset_args: Dictionary of args you want to pass to ``h5py.File.create_dataset``. This allows you to specify filters and compression parameters. Don't specify ``name`` and ``data``. These arguments are only applied to datasets larger than 1MB. :param int min_size: Minimum number of elements in a dataset to apply chunking and compression. Default is 500. The structure of the spec data in an HDF5 file is described in the documentation of :mod:`silx.io.spech5`. """ writer = Hdf5Writer(h5path=h5path, overwrite_data=overwrite_data, link_type=link_type, create_dataset_args=create_dataset_args, min_size=min_size) # both infile and h5file can be either file handle or a file name: 4 cases if not isinstance(h5file, h5py.File) and not is_group(infile): with silx.io.open(infile) as h5pylike: if not _is_commonh5_group(h5pylike): raise IOError("Cannot convert HDF5 file %s to HDF5" % infile) with h5py.File(h5file, mode) as h5f: writer.write(h5pylike, h5f) elif isinstance(h5file, h5py.File) and not is_group(infile): with silx.io.open(infile) as h5pylike: if not _is_commonh5_group(h5pylike): raise IOError("Cannot convert HDF5 file %s to HDF5" % infile) writer.write(h5pylike, h5file) elif is_group(infile) and not isinstance(h5file, h5py.File): if not _is_commonh5_group(infile): raise IOError("Cannot convert HDF5 file %s to HDF5" % infile.file.name) with h5py.File(h5file, mode) as h5f: writer.write(infile, h5f) else: if not _is_commonh5_group(infile): raise IOError("Cannot convert HDF5 file %s to HDF5" % infile.file.name) writer.write(infile, h5file)
[docs]def convert(infile, h5file, mode="w-", create_dataset_args=None): """Convert a supported file into an HDF5 file, write scans into the root group (``/``). This is a convenience shortcut to call:: write_to_h5(h5like, h5file, h5path='/', mode="w-", link_type="soft") :param infile: Path of input file or :class:`commonh5.File` object or :class:`commonh5.Group` object :param h5file: Path of output HDF5 file, or h5py.File object :param mode: Can be ``"w"`` (write, existing file is lost), ``"w-"`` (write, fail if exists). This is ignored if ``h5file`` is a file handle. :param create_dataset_args: Dictionary of args you want to pass to ``h5py.File.create_dataset``. This allows you to specify filters and compression parameters. Don't specify ``name`` and ``data``. """ if mode not in ["w", "w-"]: raise IOError("File mode must be 'w' or 'w-'. Use write_to_h5" + " to append data to an existing HDF5 file.") write_to_h5(infile, h5file, h5path='/', mode=mode, create_dataset_args=create_dataset_args)