Source code for silx.io.utils

# coding: utf-8
# /*##########################################################################
# Copyright (C) 2016-2017 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ############################################################################*/
""" I/O utility functions"""

import numpy
import os.path
import sys
import time
import logging
from silx.utils.decorators import deprecated

try:
    import h5py
except ImportError as e:
    h5py_missing = True
    h5py_import_error = e
else:
    h5py_missing = False


__authors__ = ["P. Knobel"]
__license__ = "MIT"
__date__ = "13/12/2016"


logger = logging.getLogger(__name__)

string_types = (basestring,) if sys.version_info[0] == 2 else (str,)  # noqa

builtin_open = open


[docs]def save1D(fname, x, y, xlabel=None, ylabels=None, filetype=None, fmt="%.7g", csvdelim=";", newline="\n", header="", footer="", comments="#", autoheader=False): """Saves any number of curves to various formats: `Specfile`, `CSV`, `txt` or `npy`. All curves must have the same number of points and share the same ``x`` values. :param fname: Output file path, or file handle open in write mode. If ``fname`` is a path, file is opened in ``w`` mode. Existing file with a same name will be overwritten. :param x: 1D-Array (or list) of abscissa values. :param y: 2D-array (or list of lists) of ordinates values. First index is the curve index, second index is the sample index. The length of the second dimension (number of samples) must be equal to ``len(x)``. ``y`` can be a 1D-array in case there is only one curve to be saved. :param filetype: Filetype: ``"spec", "csv", "txt", "ndarray"``. If ``None``, filetype is detected from file name extension (``.dat, .csv, .txt, .npy``). :param xlabel: Abscissa label :param ylabels: List of `y` labels :param fmt: Format string for data. You can specify a short format string that defines a single format for both ``x`` and ``y`` values, or a list of two different format strings (e.g. ``["%d", "%.7g"]``). Default is ``"%.7g"``. This parameter does not apply to the `npy` format. :param csvdelim: String or character separating columns in `txt` and `CSV` formats. The user is responsible for ensuring that this delimiter is not used in data labels when writing a `CSV` file. :param newline: String or character separating lines/records in `txt` format (default is line break character ``\\n``). :param header: String that will be written at the beginning of the file in `txt` format. :param footer: String that will be written at the end of the file in `txt` format. :param comments: String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: ``#``. :param autoheader: In `CSV` or `txt`, ``True`` causes the first header line to be written as a standard CSV header line with column labels separated by the specified CSV delimiter. When saving to Specfile format, each curve is saved as a separate scan with two data columns (``x`` and ``y``). `CSV` and `txt` formats are similar, except that the `txt` format allows user defined header and footer text blocks, whereas the `CSV` format has only a single header line with columns labels separated by field delimiters and no footer. The `txt` format also allows defining a record separator different from a line break. The `npy` format is written with ``numpy.save`` and can be read back with ``numpy.load``. If ``xlabel`` and ``ylabels`` are undefined, data is saved as a regular 2D ``numpy.ndarray`` (contatenation of ``x`` and ``y``). If both ``xlabel`` and ``ylabels`` are defined, the data is saved as a ``numpy.recarray`` after being transposed and having labels assigned to columns. """ available_formats = ["spec", "csv", "txt", "ndarray"] if filetype is None: exttypes = {".dat": "spec", ".csv": "csv", ".txt": "txt", ".npy": "ndarray"} outfname = (fname if not hasattr(fname, "name") else fname.name) fileext = os.path.splitext(outfname)[1] if fileext in exttypes: filetype = exttypes[fileext] else: raise IOError("File type unspecified and could not be " + "inferred from file extension (not in " + "txt, dat, csv, npy)") else: filetype = filetype.lower() if filetype not in available_formats: raise IOError("File type %s is not supported" % (filetype)) # default column headers if xlabel is None: xlabel = "x" if ylabels is None: if len(numpy.array(y).shape) > 1: ylabels = ["y%d" % i for i in range(len(y))] else: ylabels = ["y"] elif isinstance(ylabels, (list, tuple)): # if ylabels is provided as a list, every element must # be a string ylabels = [ylabels[i] if ylabels[i] is not None else "y%d" % i for i in range(len(ylabels))] if filetype.lower() == "spec": y_array = numpy.asarray(y) # make sure y_array is a 2D array even for a single curve if len(y_array.shape) == 1: y_array.shape = (1, y_array.shape[0]) elif len(y_array.shape) > 2 or len(y_array.shape) < 1: raise IndexError("y must be a 1D or 2D array") # First curve specf = savespec(fname, x, y_array[0], xlabel, ylabels[0], fmt=fmt, scan_number=1, mode="w", write_file_header=True, close_file=False) # Other curves for i in range(1, y_array.shape[0]): specf = savespec(specf, x, y_array[i], xlabel, ylabels[i], fmt=fmt, scan_number=i + 1, mode="w", write_file_header=False, close_file=False) # close file if we created it if not hasattr(fname, "write"): specf.close() else: autoheader_line = xlabel + csvdelim + csvdelim.join(ylabels) if xlabel is not None and ylabels is not None and filetype == "csv": # csv format: optional single header line with labels, no footer if autoheader: header = autoheader_line + newline else: header = "" comments = "" footer = "" newline = "\n" elif filetype == "txt" and autoheader: # Comments string is added at the beginning of header string in # savetxt(). We add another one after the first header line and # before the rest of the header. if header: header = autoheader_line + newline + comments + header else: header = autoheader_line + newline # Concatenate x and y in a single 2D array X = numpy.vstack((x, y)) if filetype.lower() in ["csv", "txt"]: X = X.transpose() savetxt(fname, X, fmt=fmt, delimiter=csvdelim, newline=newline, header=header, footer=footer, comments=comments) elif filetype.lower() == "ndarray": if xlabel is not None and ylabels is not None: labels = [xlabel] + ylabels # .transpose is needed here because recarray labels # apply to columns X = numpy.core.records.fromrecords(X.transpose(), names=labels) numpy.save(fname, X) # Replace with numpy.savetxt when dropping support of numpy < 1.7.0
[docs]def savetxt(fname, X, fmt="%.7g", delimiter=";", newline="\n", header="", footer="", comments="#"): """``numpy.savetxt`` backport of header and footer arguments from numpy=1.7.0. See ``numpy.savetxt`` help: http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.savetxt.html """ if not hasattr(fname, "name"): ffile = builtin_open(fname, 'wb') else: ffile = fname if header: if sys.version_info[0] >= 3: header = header.encode("utf-8") ffile.write(header) numpy.savetxt(ffile, X, fmt, delimiter, newline) if footer: footer = (comments + footer.replace(newline, newline + comments) + newline) if sys.version_info[0] >= 3: footer = footer.encode("utf-8") ffile.write(footer) if not hasattr(fname, "name"): ffile.close()
[docs]def savespec(specfile, x, y, xlabel="X", ylabel="Y", fmt="%.7g", scan_number=1, mode="w", write_file_header=True, close_file=False): """Saves one curve to a SpecFile. The curve is saved as a scan with two data columns. To save multiple curves to a single SpecFile, call this function for each curve by providing the same file handle each time. :param specfile: Output SpecFile name, or file handle open in write or append mode. If a file name is provided, a new file is open in write mode (existing file with the same name will be lost) :param x: 1D-Array (or list) of abscissa values :param y: 1D-array (or list) of ordinates values :param xlabel: Abscissa label (default ``"X"``) :param ylabel: Ordinate label :param fmt: Format string for data. You can specify a short format string that defines a single format for both ``x`` and ``y`` values, or a list of two different format strings (e.g. ``["%d", "%.7g"]``). Default is ``"%.7g"``. :param scan_number: Scan number (default 1). :param mode: Mode for opening file: ``w`` (default), ``a``, ``r+``, ``w+``, ``a+``. This parameter is only relevant if ``specfile`` is a path. :param write_file_header: If ``True``, write a file header before writing the scan (``#F`` and ``#D`` line). :param close_file: If ``True``, close the file after saving curve. :return: ``None`` if ``close_file`` is ``True``, else return the file handle. """ # Make sure we use binary mode for write # (issue with windows: write() replaces \n with os.linesep in text mode) if "b" not in mode: first_letter = mode[0] assert first_letter in "rwa" mode = mode.replace(first_letter, first_letter + "b") x_array = numpy.asarray(x) y_array = numpy.asarray(y) if y_array.shape[0] != x_array.shape[0]: raise IndexError("X and Y columns must have the same length") if isinstance(fmt, string_types) and fmt.count("%") == 1: full_fmt_string = fmt + " " + fmt + "\n" elif isinstance(fmt, (list, tuple)) and len(fmt) == 2: full_fmt_string = " ".join(fmt) + "\n" else: raise ValueError("fmt must be a single format string or a list of " + "two format strings") if not hasattr(specfile, "write"): f = builtin_open(specfile, mode) else: f = specfile output = "" current_date = "#D %s\n" % (time.ctime(time.time())) if write_file_header: output += "#F %s\n" % f.name output += current_date output += "\n" output += "#S %d %s\n" % (scan_number, ylabel) output += current_date output += "#N 2\n" output += "#L %s %s\n" % (xlabel, ylabel) for i in range(y_array.shape[0]): output += full_fmt_string % (x_array[i], y_array[i]) output += "\n" f.write(output.encode()) if close_file: f.close() return None return f
[docs]def h5ls(h5group, lvl=0): """Return a simple string representation of a HDF5 tree structure. :param h5group: Any :class:`h5py.Group` or :class:`h5py.File` instance, or a HDF5 file name :param lvl: Number of tabulations added to the group. ``lvl`` is incremented as we recursively process sub-groups. :return: String representation of an HDF5 tree structure Group names and dataset representation are printed preceded by a number of tabulations corresponding to their depth in the tree structure. Datasets are represented as :class:`h5py.Dataset` objects. Example:: >>> print(h5ls("Downloads/sample.h5")) +fields +fieldB <HDF5 dataset "z": shape (256, 256), type "<f4"> +fieldE <HDF5 dataset "x": shape (256, 256), type "<f4"> <HDF5 dataset "y": shape (256, 256), type "<f4"> .. note:: This function requires `h5py <http://www.h5py.org/>`_ to be installed. """ if h5py_missing: logger.error("h5ls requires h5py") raise h5py_import_error h5repr = '' if is_group(h5group): h5f = h5group elif isinstance(h5group, string_types): h5f = open(h5group) # silx.io.open else: raise TypeError("h5group must be a hdf5-like group object or a file name.") for key in h5f.keys(): # group if hasattr(h5f[key], 'keys'): h5repr += '\t' * lvl + '+' + key h5repr += '\n' h5repr += h5ls(h5f[key], lvl + 1) # dataset else: h5repr += '\t' * lvl h5repr += str(h5f[key]) h5repr += '\n' if isinstance(h5group, string_types): h5f.close() return h5repr
[docs]def open(filename): # pylint:disable=redefined-builtin """ Load a file as an `h5py.File`-like object. Format supported: - h5 files, if `h5py` module is installed - Spec files if `SpecFile` module is installed - a set of raster image formats (tiff, edf...) if `fabio` is installed :param str filename: A filename :raises: IOError if the file can't be loaded as an h5py.File like object :rtype: h5py.File """ if not os.path.isfile(filename): raise IOError("Filename '%s' must be a file path" % filename) if not h5py_missing: if h5py.is_hdf5(filename): return h5py.File(filename) try: from . import fabioh5 return fabioh5.File(filename) except ImportError: logger.debug("fabioh5 can't be loaded.", exc_info=True) except Exception: logger.debug("File '%s' can't be read as fabio file.", filename, exc_info=True) try: from . import spech5 return spech5.SpecH5(filename) except ImportError: logger.debug("spech5 can't be loaded.", exc_info=True) except IOError: logger.debug("File '%s' can't be read as spec file.", filename, exc_info=True) raise IOError("File '%s' can't be read as HDF5" % filename)
@deprecated
[docs]def load(filename): """ Load a file as an `h5py.File`-like object. Format supported: - h5 files, if `h5py` module is installed - Spec files if `SpecFile` module is installed .. deprecated:: 0.4 Use :meth:`open`, or :meth:`silx.io.open`. Will be removed in Silx 0.5. :param str filename: A filename :raises: IOError if the file can't be loaded as an h5py.File like object :rtype: h5py.File """ return open(filename)
[docs]def get_h5py_class(obj): """Returns the h5py class from an object. If it is an h5py object or an h5py-like object, an h5py class is returned. If the object is not an h5py-like object, None is returned. :param obj: An object :return: An h5py object """ if hasattr(obj, "h5py_class"): return obj.h5py_class elif isinstance(obj, (h5py.File, h5py.Group, h5py.Dataset)): return obj.__class__ else: return None
[docs]def is_file(obj): """ True is the object is an h5py.File-like object. :param obj: An object """ class_ = get_h5py_class(obj) if class_ is None: return False return issubclass(class_, h5py.File)
[docs]def is_group(obj): """ True is the object is an h5py.Group-like object. :param obj: An object """ class_ = get_h5py_class(obj) if class_ is None: return False return issubclass(class_, h5py.Group)
[docs]def is_dataset(obj): """ True is the object is an h5py.Dataset-like object. :param obj: An object """ class_ = get_h5py_class(obj) if class_ is None: return False return issubclass(class_, h5py.Dataset)
if h5py_missing: def raise_h5py_missing(obj): logger.error("get_h5py_class/is_file/is_group/is_dataset requires h5py") raise h5py_import_error get_h5py_class = raise_h5py_missing is_file = raise_h5py_missing is_group = raise_h5py_missing is_dataset = raise_h5py_missing