Custom fit configuration widgets

The silx fit widget allows users to add custom fit theories. A fit theory consists of several components, such as the model function to be fitted, an estimation function...

One of these component is the optional custom configuration widget. This is the dialog widget that is opened when a user clicks the Configure button next to the drop-down list used to select the fit theory or the background theory.

This tutorial explains how to define your own fit configuration widget for your custom fit theories.

Prerequisites

This tutorial assumes that you are already familiar with the standard features of silx.gui.fit.FitWidget. See the Using FitWidget tutorial.

You should also be familiar with adding custom fit theories.

You will find documentation about these subjects by clicking the following links:

The widgets we will create in this tutorial are based on the PyQt library. Some knowledge of PyQt is desirable.

Basic concepts

Associate a dialog to a theory

After defining a custom dialog widget, it must be initialized and associated with a theory.

A fit theory in FitWidget is defined by a name. For example, one of the default theories is named “Gaussians”. So if you define a configuration dialog MyGaussianConfigWidget to define configuration parameters understood by this theory, you can associate it the following way.

fw = FitWidget()
my_config_widget = MyGaussianConfigWidget(parent=fw)
fw.associateConfigDialog(theory_name="Gaussians",
                         config_widget=my_config_widget)

Example

The following example defines a very basic configuration dialog widget with a simple text entry in which the user can type in a floating point value.

The value is simply saved in a dictionary attribute CustomConfigWidget.output. FitWidget will look-up this dictionary and pass it to the theory’s custom configuration function, fitconfig(). The configuration function essentially updates the CONFIG dictionary used by our fit function to scale the y values.

from silx.gui import qt
from silx.gui.fit import FitWidget
from silx.math.fit.fittheory import FitTheory
from silx.math.fit.fitmanager import FitManager

app = qt.QApplication([])

# default fit configuration
CONFIG = {"scale": 1.0}

# define custom fit config dialog
class CustomConfigWidget(qt.QDialog):
    def __init__(self):
        qt.QDialog.__init__(self)
        self.setModal(True)
        self.scalingFactorEdit = qt.QLineEdit(self)
        self.scalingFactorEdit.setToolTip(
            "Enter the scaling factor"
        )
        self.scalingFactorEdit.setValidator(qt.QDoubleValidator(self))

        self.ok = qt.QPushButton("ok", self)
        self.ok.clicked.connect(self.accept)
        cancel = qt.QPushButton("cancel", self)
        cancel.clicked.connect(self.reject)

        layout = qt.QVBoxLayout(self)
        layout.addWidget(self.scalingFactorEdit)
        layout.addWidget(self.ok)
        layout.addWidget(cancel)

        self.old_scale = CONFIG["scale"]
        self.output = {}

    def accept(self):
        self.output["scale"] = float(self.scalingFactorEdit.text())
        qt.QDialog.accept(self)

    def reject(self):
        self.output["scale"] = self.old_scale
        qt.QDialog.reject(self)

# our actual fit model function
def fitfun(x, a, b):
    return CONFIG["scale"] * (a * x + b)

# fit configuration
def fitconfig(scale=None, **kw):
    """Update global config dict CONFIG"""
    if scale is not None:
        CONFIG["scale"] = scale
    return CONFIG

# synthetic test data a=2, b=3
x = list(range(0, 100))
y = [fitfun(x_, 2, 3) for x_ in x]

# register our custom fit theory
fitmngr = FitManager()
fitmngr.setdata(x, y)
fitmngr.addtheory("scaled linear",
                  FitTheory(
                      function=fitfun,
                      parameters=["a", "b"],
                      configure=fitconfig))

# open a fitwidget and associate an instance of our custom
# configuration dialog to our custom theory
fw = FitWidget(fitmngr=fitmngr)
fw.associateConfigDialog("scaled linear", CustomConfigWidget())
fw.show()

app.exec_()
Screenshot Description
img0 If the default value of 1.0 is used, the fit finds a=2 and b=3 as expected.
img1 Setting a scaling factor of 2.1 causes the fit to find results that are less than about half of the normal expected result.
img2 A scaling factor of 0.5 causes the fit to find the values to be double of the ones used for generating the synthetic data.