Getting started with plot widgets¶
This introduction to silx.gui.plot
covers the following topics:
- Use silx.gui.plot from the console
- Use silx.gui.plot from a script
- Plot curves in a widget
- Plot images in a widget
- Control plot axes
For a complete description of the API, see silx.gui.plot
.
Use silx.gui.plot
from the console¶
From IPython¶
To run silx.gui.plot
widgets from IPython, IPython must be set to use Qt (and in case of using PyQt4 and Python 2.7, PyQt must be set ti use API version 2, see Explanation below).
As silx is performing some configuration of the Qt binding and matplotlib, the safest way to use silx from IPython is to import silx.gui.plot
first and then run either %gui qt or %pylab qt:
In [1]: from silx.gui.plot import *
In [2]: %pylab qt
Alternatively, when using Python 2.7 and PyQt4, you can start IPython with the QT_API
environment variable set to pyqt
.
On Linux and MacOS X, run:
QT_API=pyqt ipython
On Windows, run from the command line:
set QT_API=pyqt&&ipython
Explanation¶
PyQt4 used from Python 2.x provides 2 incompatible versions of QString and QVariant:
- version 1, the legacy which is the default, and
- version 2, a more pythonic one, which is the only one supported by silx.
All other configurations (i.e., PyQt4 on Python 3.x, PySide, PyQt5, IPython QtConsole widget) uses version 2 only or as the default.
For more information, see IPython, PyQt and PySide.
From Python¶
The silx.sx
package is a convenient module to use silx from the console.
It sets-up Qt and provides functions for the main features of silx.
>>> from silx import sx
Alternatively, you can create a QApplication before using silx widgets:
>>> from silx.gui import qt # Import Qt binding and do some set-up
>>> qapp = qt.QApplication([])
>>> from silx.gui.plot import * # Import plot widgets and set-up matplotlib
Plot functions¶
The silx.sx
package provides 2 functions to plot curves and images from the (I)Python console in a widget with a set of tools:
plot()
, andimshow()
.
For more features, use widgets directly (see Plot curves in a widget and Plot images in a widget).
Curve: plot()
¶
The following examples must run with a Qt QApplication initialized (see Use silx.gui.plot from the console).
First import sx
function:
>>> from silx import sx
>>> import numpy
Plot a single curve given some values:
>>> values = numpy.random.random(100)
>>> plot_1curve = sx.plot(values, title='Random data')
Plot a single curve given the x and y values:
>>> angles = numpy.linspace(0, numpy.pi, 100)
>>> sin_a = numpy.sin(angles)
>>> plot_sinus = sx.plot(angles, sin_a,
... xlabel='angle (radian)', ylabel='sin(a)')
Plot many curves by giving a 2D array, provided xn, yn arrays:
>>> plot_curves = sx.plot(x0, y0, x1, y1, x2, y2, ...)
Plot curve with style giving a style string:
>>> plot_styled = sx.plot(x0, y0, 'ro-', x1, y1, 'b.')
See plot()
for details.
Image: imshow()
¶
This example plot a single image.
First, import silx.sx
:
>>> from silx import sx
>>> import numpy
>>> data = numpy.random.random(1024 * 1024).reshape(1024, 1024)
>>> plt = sx.imshow(data, title='Random data')
See imshow()
for more details.
Use silx.gui.plot
from a script¶
A Qt GUI script must have a QApplication initialized before creating widgets:
from silx.gui import qt
[...]
qapp = qt.QApplication([])
[...] # Widgets initialisation
if __name__ == '__main__':
[...]
qapp.exec_()
Unless a Qt binding has already been loaded, silx.gui.qt
uses the first Qt binding it founds by probing in the following order: PyQt5, PyQt4 and finally PySide.
If you prefer to choose the Qt binding yourself, import it before importing
a module from silx.gui
:
import PySide # Importing PySide will force silx to use it
from silx.gui import qt
Warning
silx.gui.plot
widgets are not thread-safe.
All calls to silx.gui.plot
widgets must be made from the main thread.
Plot curves in a widget¶
The Plot1D
widget provides a plotting area and a toolbar with tools useful for curves such as setting logarithmic scale or defining region of interest.
First, create a Plot1D
widget:
from silx.gui.plot import Plot1D
plot = Plot1D() # Create the plot widget
plot.show() # Make the plot widget visible
One curve¶
To display a single curve, use the PlotWidget.addCurve()
method:
plot.addCurve(x=(1, 2, 3), y=(3, 2, 1)) # Add a curve with default style
When you need to update this curve, call PlotWidget.addCurve()
again with the new values to display:
plot.addCurve(x=(1, 2, 3), y=(1, 2, 3)) # Replace the existing curve
To clear the plotting area, call PlotWidget.clear()
:
plot.clear()
Multiple curves¶
In order to display multiple curves at the same time, you need to provide a different legend
string for each of them:
import numpy
x = numpy.linspace(-numpy.pi, numpy.pi, 1000)
plot.addCurve(x, numpy.sin(x), legend='sinus')
plot.addCurve(x, numpy.cos(x), legend='cosinus')
plot.addCurve(x, numpy.random.random(len(x)), legend='random')
To update a curve, call PlotWidget.addCurve()
with the legend
of the curve you want to udpdate.
By default, the new curve will keep the same color (and style) as the curve it is updating:
plot.addCurve(x, numpy.random.random(len(x)) - 1., legend='random')
To remove a curve from the plot, call PlotWidget.remove()
with the legend
of the curve you want to remove from the plot:
plot.remove('random')
To clear the plotting area, call PlotWidget.clear()
:
plot.clear()
Curve style¶
By default, different curves will automatically use different styles to render, and keep the same style when updated.
It is possible to specify the color
of the curve, its linewidth
and linestyle
as well as the symbol
to use as markers for data points (See PlotWidget.addCurve()
for more details):
import numpy
x = numpy.linspace(-numpy.pi, numpy.pi, 100)
# Curve with a thick dashed line
plot.addCurve(x, numpy.sin(x), legend='sinus',
linewidth=3, linestyle='--')
# Curve with pink markers only
plot.addCurve(x, numpy.cos(x), legend='cosinus',
color='pink', linestyle=' ', symbol='o')
# Curve with green line with square markers
plot.addCurve(x, numpy.random.random(len(x)), legend='random',
color='green', linestyle='-', symbol='s')
Histogram¶
Data can be displayed as an histogram. This must be specified when calling the the addCurve function. (using histogram
, See PlotWidget.addCurve()
for more details ).
Histogram steps can be centered on x values or set at the left or the right of the given x values.
import numpy
x = numpy.arange(0, 20, 1)
plot.addCurve(x, x+1, histogram='center', fill=True, color='green')
Note
You can also give x as edges. For this you must have len(x) = len(y) + 1
Plot images in a widget¶
The Plot2D
widget provides a plotting area and a toolbar with tools useful for images, such as keeping aspect ratio, changing the colormap or defining a mask.
First, create a Plot2D
widget:
from silx.gui.plot import Plot2D
plot = Plot2D() # Create the plot widget
plot.show() # Make the plot widget visible
One image¶
To display a single image, use the PlotWidget.addImage()
method:
import numpy
data = numpy.random.random(512 * 512).reshape(512, -1) # Create 2D image
plot.addImage(data) # Plot the 2D data set with default colormap
To update this image, call PlotWidget.addImage()
again with the new image to display:
# Create a RGB image
rgb_image = (numpy.random.random(512*512*3) * 255).astype(numpy.uint8)
rgb_image.shape = 512, 512, 3
plot.addImage(rgb_image) # Plot the RGB image instead of the previous data
To clear the plotting area, call PlotWidget.clear()
:
plot.clear()
Origin and scale¶
PlotWidget.addImage()
supports both 2D arrays of data displayed with a colormap and RGB(A) images as 3D arrays of shape (height, width, color channels).
When displaying an image, it is possible to specify the origin
and the scale
of the image array in the plot area coordinates:
data = numpy.random.random(512 * 512).reshape(512, -1)
plot.addImage(data, origin=(100, 100), scale=(0.1, 0.1))
When updating an image, if origin
and scale
are not provided, the previous values will be used:
data = numpy.random.random(512 * 512).reshape(512, -1)
plot.addImage(data) # Keep previous origin and scale
Colormap¶
A colormap
is described with a Colormap
class as follows:
colormap = Colormap(name='gray', # Name of the colormap
normalization='linear', # Either 'linear' or 'log'
vmin=0.0, # If not autoscale, data value to bind to min of colormap
vmax=1.0 # If not autoscale, data value to bind to max of colormap
)
At least the following colormap names are guaranteed to be available, but any colormap name from matplotlib (see Choosing Colormaps) should work:
- gray
- reversed gray
- temperature
- red
- green
- blue
- viridis
- magma
- inferno
- plasma
It is possible to change the default colormap of PlotWidget.addImage()
for the plot widget with PlotWidget.setDefaultColormap()
(and to get it with PlotWidget.getDefaultColormap()
):
colormap = Colormap(name='viridis',
normalization='linear',
vmin=0.0,
vmax=1.0)
plot.setDefaultColormap(colormap)
data = numpy.arange(512 * 512.).reshape(512, -1)
plot.addImage(data) # Rendered with the default colormap set before
It is also possible to provide a Colormap
to PlotWidget.addImage()
to override this default for an image:
colormap = Colormap(name='magma',
normalization='log',
vmin=1.2,
vmax=1.8)
data = numpy.random.random(512 * 512).reshape(512, -1) + 1.
plot.addImage(data, colormap=colormap)
As for Origin and scale, when updating an image, if colormap
is not provided, the previous colormap will be used:
data = numpy.random.random(512 * 512).reshape(512, -1) + 1.
plot.addImage(data) # Keep previous colormap
The colormap can be changed by the user from the widget’s toolbar.
Multiple images¶
In order to display multiple images at the same time, you need to provide a different legend
string for each of them and to set the replace
argument to False
:
data = numpy.random.random(512 * 512).reshape(512, -1)
plot.addImage(data, legend='random', replace=False)
data = numpy.arange(512 * 512.).reshape(512, -1)
plot.addImage(data, legend='arange', replace=False, origin=(512, 512))
To update an image, call PlotWidget.addImage()
with the legend
of the curve you want to udpdate.
By default, the new image will keep the same colormap, origin and scale as the image it is updating:
data = (512 * 512. - numpy.arange(512 * 512.)).reshape(512, -1)
plot.addImage(data, legend='arange', replace=False) # Beware of replace=False
To remove an image from the plot, call PlotWidget.remove()
with the legend
of the image you want to remove:
plot.remove('random')
Control plot axes¶
The following examples illustrate the API to control the plot axes.
PlotWidget.getXAxis()
and PlotWidget.getYAxis()
give access to each plot axis (items.Axis
) in order to control them.
Labels and title¶
Use PlotWidget.setGraphTitle()
to set the plot main title.
Use PlotWidget.getXAxis()
and PlotWidget.getYAxis()
to get the axes and set their text label with items.Axis.setLabel()
:
plot.setGraphTitle('My plot')
plot.getXAxis().setLabel('X')
plot.getYAxis().setLabel('Y')
Axes limits¶
Different methods allows to get and set the data limits displayed on each axis.
The following code moves the visible plot area to the right:
xmin, xmax = plot.getXAxis().getLimits()
offset = 0.1 * (xmax - xmin)
plot.getXAxis().setLimits(xmin + offset, xmax + offset)
PlotWidget.resetZoom()
set the plot limits to the bounds of the data:
plot.resetZoom()
See PlotWidget.resetZoom()
, PlotWidget.setLimits()
, PlotWidget.getXAxis()
, PlotWidget.getYAxis()
and items.Axis
for details.
Axes¶
Different methods allow plot axes modifications:
plot.getYAxis().setInverted(True) # Makes the Y axis pointing downward
plot.setKeepDataAspectRatio(True) # To keep aspect ratio between X and Y axes
See PlotWidget.getYAxis()
, PlotWidget.setKeepDataAspectRatio()
for details.
plot.setGraphGrid(which='both') # To show a grid for both minor and major axes ticks
# Use logarithmic axes
plot.getXAxis().setScale("log")
plot.getYAxis().setScale("log")
See PlotWidget.setGraphGrid()
, PlotWidget.getXAxis()
, PlotWidget.getXAxis()
and items.Axis
for details.