Source code for silx.opencl.reconstruction

#!/usr/bin/env python
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""Module for tomographic reconstruction algorithms"""

from __future__ import absolute_import, print_function, with_statement, division

__authors__ = ["P. Paleo"]
__license__ = "MIT"
__date__ = "19/09/2017"

import logging
import numpy as np

from .common import pyopencl
from .processing import OpenclProcessing
from .backprojection import Backprojection
from .projection import Projection
from .linalg import LinAlg

import pyopencl.array as parray
from pyopencl.elementwise import ElementwiseKernel
logger = logging.getLogger(__name__)

cl = pyopencl


[docs]class ReconstructionAlgorithm(OpenclProcessing): """ A parent class for all iterative tomographic reconstruction algorithms :param sino_shape: shape of the sinogram. The sinogram is in the format (n_b, n_a) where n_b is the number of detector bins and n_a is the number of angles. :param slice_shape: Optional, shape of the reconstructed slice. By default, it is a square slice where the dimension is the "x dimension" of the sinogram (number of bins). :param axis_position: Optional, axis position. Default is `(shape[1]-1)/2.0`. :param angles: Optional, a list of custom angles in radian. :param ctx: actual working context, left to None for automatic initialization from device type or platformid/deviceid :param devicetype: type of device, can be "CPU", "GPU", "ACC" or "ALL" :param platformid: integer with the platform_identifier, as given by clinfo :param deviceid: Integer with the device identifier, as given by clinfo :param profile: switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower) """ def __init__(self, sino_shape, slice_shape=None, axis_position=None, angles=None, ctx=None, devicetype="all", platformid=None, deviceid=None, profile=False ): OpenclProcessing.__init__(self, ctx=ctx, devicetype=devicetype, platformid=platformid, deviceid=deviceid, profile=profile) # Create a backprojector self.backprojector = Backprojection( sino_shape, slice_shape=slice_shape, axis_position=axis_position, angles=angles, ctx=self.ctx, profile=profile ) # Create a projector self.projector = Projection( self.backprojector.slice_shape, self.backprojector.angles, axis_position=axis_position, detector_width=self.backprojector.num_bins, normalize=False, ctx=self.ctx, profile=profile ) self.sino_shape = sino_shape self.is_cpu = self.backprojector.is_cpu # Arrays self.d_data = parray.zeros(self.queue, sino_shape, dtype=np.float32) self.d_sino = parray.zeros_like(self.d_data) self.d_x = parray.zeros(self.queue, self.backprojector.slice_shape, dtype=np.float32) self.d_x_old = parray.zeros_like(self.d_x) self.add_to_cl_mem({ "d_data": self.d_data, "d_sino": self.d_sino, "d_x": self.d_x, "d_x_old": self.d_x_old, })
[docs] def proj(self, d_slice, d_sino): """ Project d_slice to d_sino """ self.projector.transfer_device_to_texture(d_slice.data) #.wait() self.projector.projection(dst=d_sino)
[docs] def backproj(self, d_sino, d_slice): """ Backproject d_sino to d_slice """ self.backprojector.transfer_device_to_texture(d_sino.data) #.wait() self.backprojector.backprojection(dst=d_slice)
[docs]class SIRT(ReconstructionAlgorithm): """ A class for the SIRT algorithm :param sino_shape: shape of the sinogram. The sinogram is in the format (n_b, n_a) where n_b is the number of detector bins and n_a is the number of angles. :param slice_shape: Optional, shape of the reconstructed slice. By default, it is a square slice where the dimension is the "x dimension" of the sinogram (number of bins). :param axis_position: Optional, axis position. Default is `(shape[1]-1)/2.0`. :param angles: Optional, a list of custom angles in radian. :param ctx: actual working context, left to None for automatic initialization from device type or platformid/deviceid :param devicetype: type of device, can be "CPU", "GPU", "ACC" or "ALL" :param platformid: integer with the platform_identifier, as given by clinfo :param deviceid: Integer with the device identifier, as given by clinfo :param profile: switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower) .. warning:: This is a beta version of the SIRT algorithm. Reconstruction fails for at least on CPU (Xeon E3-1245 v5) using the AMD opencl implementation. """ def __init__(self, sino_shape, slice_shape=None, axis_position=None, angles=None, ctx=None, devicetype="all", platformid=None, deviceid=None, profile=False ): ReconstructionAlgorithm.__init__(self, sino_shape, slice_shape=slice_shape, axis_position=axis_position, angles=angles, ctx=ctx, devicetype=devicetype, platformid=platformid, deviceid=deviceid, profile=profile) self.compute_preconditioners()
[docs] def compute_preconditioners(self): """ Create a diagonal preconditioner for the projection and backprojection operator. Each term of the diagonal is the sum of the projector/backprojector along rows [1], i.e the projection/backprojection of an array of ones. [1] Jens Gregor and Thomas Benson, Computational Analysis and Improvement of SIRT, IEEE transactions on medical imaging, vol. 27, no. 7, 2008 """ # r_{i,i} = 1/(sum_j a_{i,j}) slice_ones = np.ones(self.backprojector.slice_shape, dtype=np.float32) R = 1./self.projector.projection(slice_ones) # could be all done on GPU, but I want extra checks R[np.logical_not(np.isfinite(R))] = 1. # In the case where the rotation axis is excentred self.d_R = parray.to_device(self.queue, R) # c_{j,j} = 1/(sum_i a_{i,j}) sino_ones = np.ones(self.sino_shape, dtype=np.float32) C = 1./self.backprojector.backprojection(sino_ones) C[np.logical_not(np.isfinite(C))] = 1. # In the case where the rotation axis is excentred self.d_C = parray.to_device(self.queue, C) self.add_to_cl_mem({ "d_R": self.d_R, "d_C": self.d_C })
# TODO: compute and possibly return the residual
[docs] def run(self, data, n_it): """ Run n_it iterations of the SIRT algorithm. """ cl.enqueue_copy(self.queue, self.d_data.data, np.ascontiguousarray(data.astype(np.float32))) d_x_old = self.d_x_old d_x = self.d_x d_R = self.d_R d_C = self.d_C d_sino = self.d_sino d_x *= 0 for k in range(n_it): d_x_old[:] = d_x[:] # x{k+1} = x{k} - C A^T R (A x{k} - b) self.proj(d_x, d_sino) d_sino -= self.d_data d_sino *= d_R if self.is_cpu: # This sync is necessary when using CPU, while it is not for GPU d_sino.finish() self.backproj(d_sino, d_x) d_x *= -d_C d_x += d_x_old if self.is_cpu: # This sync is necessary when using CPU, while it is not for GPU d_x.finish() return d_x
__call__ = run
[docs]class TV(ReconstructionAlgorithm): """ A class for reconstruction with Total Variation regularization using the Chambolle-Pock TV reconstruction algorithm. :param sino_shape: shape of the sinogram. The sinogram is in the format (n_b, n_a) where n_b is the number of detector bins and n_a is the number of angles. :param slice_shape: Optional, shape of the reconstructed slice. By default, it is a square slice where the dimension is the "x dimension" of the sinogram (number of bins). :param axis_position: Optional, axis position. Default is `(shape[1]-1)/2.0`. :param angles: Optional, a list of custom angles in radian. :param ctx: actual working context, left to None for automatic initialization from device type or platformid/deviceid :param devicetype: type of device, can be "CPU", "GPU", "ACC" or "ALL" :param platformid: integer with the platform_identifier, as given by clinfo :param deviceid: Integer with the device identifier, as given by clinfo :param profile: switch on profiling to be able to profile at the kernel level, store profiling elements (makes code slightly slower) .. warning:: This is a beta version of the Chambolle-Pock TV algorithm. Reconstruction fails for at least on CPU (Xeon E3-1245 v5) using the AMD opencl implementation. """ def __init__(self, sino_shape, slice_shape=None, axis_position=None, angles=None, ctx=None, devicetype="all", platformid=None, deviceid=None, profile=False ): ReconstructionAlgorithm.__init__(self, sino_shape, slice_shape=slice_shape, axis_position=axis_position, angles=angles, ctx=ctx, devicetype=devicetype, platformid=platformid, deviceid=deviceid, profile=profile) self.compute_preconditioners() # Create a LinAlg instance self.linalg = LinAlg(self.backprojector.slice_shape, ctx=self.ctx) # Positivity constraint self.elwise_clamp = ElementwiseKernel(self.ctx, "float *a", "a[i] = max(a[i], 0.0f);") # Projection onto the L-infinity ball of radius Lambda self.elwise_proj_linf = ElementwiseKernel( self.ctx, "float2* a, float Lambda", "a[i].x = copysign(min(fabs(a[i].x), Lambda), a[i].x); a[i].y = copysign(min(fabs(a[i].y), Lambda), a[i].y);", "elwise_proj_linf" ) # Additional arrays self.linalg.gradient(self.d_x) self.d_p = parray.zeros_like(self.linalg.cl_mem["d_gradient"]) self.d_q = parray.zeros_like(self.d_data) self.d_g = self.linalg.d_image self.d_tmp = parray.zeros_like(self.d_x) self.add_to_cl_mem({ "d_p": self.d_p, "d_q": self.d_q, "d_tmp": self.d_tmp, }) self.theta = 1.0
[docs] def compute_preconditioners(self): """ Create a diagonal preconditioner for the projection and backprojection operator. Each term of the diagonal is the sum of the projector/backprojector along rows [2], i.e the projection/backprojection of an array of ones. [2] T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, International Conference on Computer Vision, 2011 """ # Compute the diagonal preconditioner "Sigma" slice_ones = np.ones(self.backprojector.slice_shape, dtype=np.float32) Sigma_k = 1./self.projector.projection(slice_ones) Sigma_k[np.logical_not(np.isfinite(Sigma_k))] = 1. self.d_Sigma_k = parray.to_device(self.queue, Sigma_k) self.d_Sigma_kp1 = self.d_Sigma_k + 1 # TODO: memory vs computation self.Sigma_grad = 1/2.0 # For discrete gradient, sum|D_i,j| = 2 along lines or cols # Compute the diagonal preconditioner "Tau" sino_ones = np.ones(self.sino_shape, dtype=np.float32) C = self.backprojector.backprojection(sino_ones) Tau = 1./(C + 2.) self.d_Tau = parray.to_device(self.queue, Tau) self.add_to_cl_mem({ "d_Sigma_k": self.d_Sigma_k, "d_Sigma_kp1": self.d_Sigma_kp1, "d_Tau": self.d_Tau })
[docs] def run(self, data, n_it, Lambda, pos_constraint=False): """ Run n_it iterations of the TV-regularized reconstruction, with the regularization parameter Lambda. """ cl.enqueue_copy(self.queue, self.d_data.data, np.ascontiguousarray(data.astype(np.float32))) d_x = self.d_x d_x_old = self.d_x_old d_tmp = self.d_tmp d_sino = self.d_sino d_p = self.d_p d_q = self.d_q d_g = self.d_g d_x *= 0 d_p *= 0 d_q *= 0 for k in range(0, n_it): # Update primal variables d_x_old[:] = d_x[:] #~ x = x + Tau*div(p) - Tau*Kadj(q) self.backproj(d_q, d_tmp) self.linalg.divergence(d_p) # TODO: this in less than three ops (one kernel ?) d_g -= d_tmp # d_g -> L.d_image d_g *= self.d_Tau d_x += d_g if pos_constraint: self.elwise_clamp(d_x) # Update dual variables #~ p = proj_linf(p + Sigma_grad*gradient(x + theta*(x - x_old)), Lambda) d_tmp[:] = d_x[:] # FIXME: mul_add is out of place, put an equivalent thing in linalg... #~ d_tmp.mul_add(1 + theta, d_x_old, -theta) d_tmp *= 1+self.theta d_tmp -= self.theta*d_x_old self.linalg.gradient(d_tmp) # TODO: out of place mul_add #~ d_p.mul_add(1, L.cl_mem["d_gradient"], Sigma_grad) self.linalg.cl_mem["d_gradient"] *= self.Sigma_grad d_p += self.linalg.cl_mem["d_gradient"] self.elwise_proj_linf(d_p, Lambda) #~ q = (q + Sigma_k*K(x + theta*(x - x_old)) - Sigma_k*data)/(1.0 + Sigma_k) self.proj(d_tmp, d_sino) # TODO: this in less instructions d_sino -= self.d_data d_sino *= self.d_Sigma_k d_q += d_sino d_q /= self.d_Sigma_kp1 return d_x
__call__ = run