.. role:: python(code)
:language: python
.. currentmodule:: silx.gui
Getting started with plot widgets
=================================
This introduction to :mod:`silx.gui.plot` covers the following topics:
- `Use silx.gui.plot from (I)Python console`_
- `Use silx.gui.plot from a script`_
- `Plot curves in a widget`_
- `Plot images in a widget`_
- `Configure plot axes`_
For a complete description of the API, see :mod:`silx.gui.plot`.
Use :mod:`silx.gui.plot` from (I)Python console
-----------------------------------------------
From a Python or IPython interpreter, the simplest way is to import the :mod:`silx.sx` module:
>>> from silx import sx
The :mod:`silx.sx` module initialises Qt and provides access to :mod:`silx.gui.plot` widgets and extra plot functions.
.. note:: The :mod:`silx.sx` module does NOT initialise Qt and does NOT expose silx widget in a notebook.
An alternative to run :mod:`silx.gui` widgets from `IPython `_,
is to set IPython to use Qt(5), e.g., with the `--gui` option::
ipython --gui=qt5
Compatibility with IPython
++++++++++++++++++++++++++
silx widgets require Qt to be initialized.
If Qt is not yet loaded, silx tries to load PyQt5 first before trying other supported bindings.
With versions of IPython lower than 3.0 (e.g., on Debian 8), there is an incompatibility between
the way silx loads Qt and the way IPython is doing it through the ``--gui`` option,
`%gui `_ or
`%pylab `_ magics.
In this case, IPython magics that initialize Qt might not work after importing modules from silx.gui.
On Linux and MacOS X, run from the command line::
QT_API=pyqt ipython
On Windows, run from the command line::
set QT_API=pyqt&&ipython
Plot functions
++++++++++++++
The :mod:`silx.sx` module provides functions to plot curves and images with :mod:`silx.gui.plot` widgets:
- :func:`~silx.sx.plot` for curves, e.g., :python:`sx.plot(y)` or :python:`sx.plot(x, y)`
- :func:`~silx.sx.imshow` for images, e.g., :python:`sx.imshow(image)`
See :mod:`silx.sx` for documentation and how to use it.
For more features, use widgets directly (see `Plot curves in a widget`_ and `Plot images in a widget`_).
Use :mod:`silx.gui.plot` from a script
--------------------------------------
A Qt GUI script must have a QApplication initialised before creating widgets:
.. code-block:: python
from silx.gui import qt
[...]
qapp = qt.QApplication([])
[...] # Widgets initialisation
if __name__ == '__main__':
[...]
qapp.exec()
Unless a Qt binding has already been loaded, :mod:`silx.gui.qt` uses one of the supported Qt bindings (PyQt5, PySide6, PyQt6).
If you prefer to choose the Qt binding yourself, import it before importing
a module from :mod:`silx.gui`:
.. code-block:: python
import PyQt5.QtCore # Importing PyQt5 will force silx to use it
from silx.gui import qt
Plot curves in a widget
-----------------------
The :class:`~silx.gui.plot.PlotWindow.Plot1D` widget provides a plotting area and a toolbar with tools useful for curves such as setting a logarithmic scale or defining a region of interest.
First, create a :class:`~silx.gui.plot.PlotWindow.Plot1D` widget:
.. code-block:: python
from silx.gui.plot import Plot1D
plot = Plot1D() # Create the plot widget
plot.show() # Make the plot widget visible
One curve
+++++++++
To display a single curve, use the :meth:`.PlotWidget.addCurve` method:
.. code-block:: python
plot.addCurve(x=(1, 2, 3), y=(3, 2, 1), legend='curve') # Add a curve named 'curve'
When you need to update this curve, first get the curve invoking :meth:`.PlotWidget.getCurve` and
update its points invoking the curve's :meth:`~silx.gui.plot.items.Curve.setData` method:
.. code-block:: python
mycurve = plot.getCurve('curve') # Retrieve the curve
mycurve.setData(x=(1, 2, 3), y=(1, 2, 3)) # Update its data
To clear the plot, call :meth:`.PlotWidget.clear`:
.. code-block:: python
plot.clear()
Multiple curves
+++++++++++++++
In order to display multiple curves in a frame, you need to provide a different ``legend`` string for each of them:
.. code-block:: python
import numpy
x = numpy.linspace(-numpy.pi, numpy.pi, 1000)
plot.addCurve(x, numpy.sin(x), legend='sinus')
plot.addCurve(x, numpy.cos(x), legend='cosinus')
plot.addCurve(x, numpy.random.random(len(x)), legend='random')
To update a curve, call :meth:`.PlotWidget.getCurve` with the ``legend`` of the curve you want to update,
and update its data through :meth:`~silx.gui.plot.items.Curve.setData`:
.. code-block:: python
curve = plot.getCurve('random')
curve.setData(x, numpy.random.random(len(x)) - 1.)
To remove a curve from the plot, call :meth:`.PlotWidget.remove` with the ``legend`` of the curve you want to remove:
.. code-block:: python
plot.remove('random')
To clear the plotting area, call :meth:`.PlotWidget.clear`:
.. code-block:: python
plot.clear()
Curve style
+++++++++++
By default, different curves will automatically be displayed using different styles, and keep the same style when updating the plot.
It is possible to specify the ``color`` of the curve, its ``linewidth`` and ``linestyle`` as well as the ``symbol`` to use as marker for data points (See :meth:`.PlotWidget.addCurve` for more details):
.. code-block:: python
import numpy
x = numpy.linspace(-numpy.pi, numpy.pi, 100)
# Curve with a thick dashed line
plot.addCurve(x, numpy.sin(x), legend='sinus',
linewidth=3, linestyle='--')
# Curve with pink markers only
plot.addCurve(x, numpy.cos(x), legend='cosinus',
color='pink', linestyle=' ', symbol='o')
# Curve with green line with square markers
plot.addCurve(x, numpy.random.random(len(x)), legend='random',
color='green', linestyle='-', symbol='s')
Histogram
+++++++++
To display histograms, use :meth:`.PlotWidget.addHistogram`:
.. code-block:: python
import numpy
values = numpy.arange(20) # Values of the histogram
edges = numpy.arange(21) # Edges of the bins (number of values + 1)
plot.addHistogram(values, edges, legend='histo1', fill=True, color='green')
Alternatively, :meth:`.PlotWidget.addCurve` can be used to display histograms with the ``histogram`` argument.
(See :meth:`.PlotWidget.addCurve` for more details).
.. code-block:: python
import numpy
x = numpy.arange(0, 20, 1)
plot.addCurve(x, x+1, legend='histo2', histogram='center', fill=False, color='black')
Histogram bins can be centred on x values or set on the left hand side or the right hand side of the given x values.
Plot images in a widget
-----------------------
The :class:`~silx.gui.plot.PlotWindow.Plot2D` widget provides a plotting area and a toolbar with tools useful for images, such as keeping the aspect ratio, changing the colormap or defining a mask.
First, create a :class:`~silx.gui.plot.PlotWindow.Plot2D` widget:
.. code-block:: python
from silx.gui.plot import Plot2D
plot = Plot2D() # Create the plot widget
plot.show() # Make the plot widget visible
One image
+++++++++
To display a single image, use the :meth:`.PlotWidget.addImage` method:
.. code-block:: python
import numpy
data = numpy.random.random(512 * 512).reshape(512, -1) # Create 2D image
plot.addImage(data, legend='image') # Plot the 2D data set with default colormap
To update this image, call :meth:`.PlotWidget.getImage` with its ``legend`` and
update its data with :meth:`~silx.gui.plot.items.Image.setData`:
.. code-block:: python
data2 = numpy.arange(512*512).reshape(512, 512)
image = plot.getImage('image') # Retrieve the image
image.setData(data2) # Update the displayed data
:meth:`.PlotWidget.addImage` supports both 2D arrays of data displayed with a colormap and RGB(A) images as 3D arrays of shape (height, width, color channels).
To clear the plot area, call :meth:`.PlotWidget.clear`:
.. code-block:: python
plot.clear()
Origin and scale
++++++++++++++++
When displaying an image, it is possible to define the ``origin`` and the ``scale`` of the image array in the plot area coordinates:
.. code-block:: python
data = numpy.random.random(512 * 512).reshape(512, -1)
plot.addImage(data, legend='image', origin=(100, 100), scale=(0.1, 0.1))
Colormap
++++++++
A ``colormap`` is described with a :class:`~silx.gui.colors.Colormap` class as follows:
.. code-block:: python
from silx.gui.colors import Colormap
colormap = Colormap(name='gray', # Name of the colormap
normalization='linear', # Either 'linear' or 'log'
vmin=0.0, # If not autoscale, data value to bind to min of colormap
vmax=1.0 # If not autoscale, data value to bind to max of colormap
)
The following colormap names are guaranteed to be available:
- gray
- reversed gray
- temperature
- red
- green
- blue
- viridis
- magma
- inferno
- plasma
Yet, any colormap name from `matplotlib `_ (see `Choosing Colormaps `_) should work.
It is possible to change the default colormap of the plot widget by :meth:`.PlotWidget.setDefaultColormap` (and to get it with :meth:`.PlotWidget.getDefaultColormap`):
.. code-block:: python
from silx.gui.colors import Colormap
colormap = Colormap(name='viridis',
normalization='linear',
vmin=0.0,
vmax=10000.0)
plot.setDefaultColormap(colormap)
data = numpy.arange(512 * 512.).reshape(512, -1)
plot.addImage(data) # Rendered with the default colormap set before
It is also possible to provide a :class:`~silx.gui.colors.Colormap` to :meth:`.PlotWidget.addImage` to override this default for an image:
.. code-block:: python
colormap = Colormap(name='magma',
normalization='log',
vmin=1.8,
vmax=2.2)
data = numpy.random.random(512 * 512).reshape(512, -1) + 1.
plot.addImage(data, colormap=colormap)
The colormap can be changed by the user from the widget's toolbar.
Multiple images
+++++++++++++++
In order to display multiple images in a frame, you need to provide a different ``legend`` string for each of them and to set the ``replace`` argument to ``False``:
.. code-block:: python
data = numpy.random.random(512 * 512).reshape(512, -1)
plot.addImage(data, legend='random', replace=False)
data = numpy.arange(512 * 512.).reshape(512, -1)
plot.addImage(data, legend='arange', replace=False, origin=(512, 512))
To update an image, call :meth:`.PlotWidget.getImage` with the ``legend`` to get the corresponding curve.
Update its data values using :meth:`~silx.gui.plot.items.setData`.
.. code-block:: python
data = (512 * 512. - numpy.arange(512 * 512.)).reshape(512, -1)
arange_image = plot.getImage('arange')
arange_image.setData(data)
To remove an image from a plot, call :meth:`.PlotWidget.remove` with the ``legend`` of the image you want to remove:
.. code-block:: python
plot.remove('random')
Configure plot axes
-------------------
The following examples illustrate the API to configure the plot axes.
:meth:`.PlotWidget.getXAxis` and :meth:`.PlotWidget.getYAxis` give access to each plot axis (:class:`.items.Axis`) in order to configure them.
Labels and title
++++++++++++++++
Use :meth:`.PlotWidget.setGraphTitle` to set the plot main title.
Use :meth:`.PlotWidget.getXAxis` and :meth:`.PlotWidget.getYAxis` to get the axes and set their text label with :meth:`.items.Axis.setLabel`:
.. code-block:: python
plot.setGraphTitle('My plot')
plot.getXAxis().setLabel('X')
plot.getYAxis().setLabel('Y')
Axes limits
+++++++++++
Different methods allow to retrieve and set the data limits displayed on each axis.
The following code moves the visible plot area to the right:
.. code-block:: python
xmin, xmax = plot.getXAxis().getLimits()
offset = 0.1 * (xmax - xmin)
plot.getXAxis().setLimits(xmin + offset, xmax + offset)
:meth:`.PlotWidget.resetZoom` set the plot limits to the upper and lower bounds of the data:
.. code-block:: python
plot.resetZoom()
See :meth:`.PlotWidget.resetZoom`, :meth:`.PlotWidget.setLimits`, :meth:`.PlotWidget.getXAxis`, :meth:`.PlotWidget.getYAxis` and :class:`.items.Axis` for details.
Axes
++++
The axes of a plot can be modified via different methods:
.. code-block:: python
plot.getYAxis().setInverted(True) # Makes the Y axis pointing downward
plot.setKeepDataAspectRatio(True) # To keep aspect ratio between X and Y axes
See :meth:`.PlotWidget.getYAxis`, :meth:`.PlotWidget.setKeepDataAspectRatio` for details.
.. code-block:: python
plot.setGraphGrid(which='both') # To show a grid for both minor and major axes ticks
# Use logarithmic axes
plot.getXAxis().setScale("log")
plot.getYAxis().setScale("log")
See :meth:`.PlotWidget.setGraphGrid`, :meth:`.PlotWidget.getXAxis`, :meth:`.PlotWidget.getXAxis` and :class:`.items.Axis` for details.