Source code for nabu.misc.processing_base

import numpy as np


[docs] class ProcessingBase: _array_class = None def __init__(self): self._allocated = {}
[docs] def init_arrays_to_none(self, arrays_names): """ Initialize arrays to None. After calling this method, the current instance will have self.array_name = None, and self._old_array_name = None. Parameters ---------- arrays_names: list of str List of arrays names. """ for array_name in arrays_names: setattr(self, array_name, None) setattr(self, "_old_" + array_name, None) self._allocated[array_name] = False
[docs] def recover_arrays_references(self, arrays_names): """ Performs self._array_name = self._old_array_name, for each array_name in arrays_names. Parameters ---------- arrays_names: list of str List of array names """ for array_name in arrays_names: old_arr = getattr(self, "_old_" + array_name, None) if old_arr is not None: setattr(self, array_name, old_arr)
def _allocate_array_mem(self, shape, dtype): raise ValueError("Base class")
[docs] def allocate_array(self, array_name, shape, dtype=np.float32): """ Allocate a GPU array on the current context/stream/device, and set 'self.array_name' to this array. Parameters ---------- array_name: str Name of the array (for book-keeping) shape: tuple of int Array shape dtype: numpy.dtype, optional Data type. Default is float32. """ if not self._allocated.get(array_name, False): new_device_arr = self._allocate_array_mem(shape, dtype) setattr(self, array_name, new_device_arr) self._allocated[array_name] = True return getattr(self, array_name)
[docs] def set_array(self, array_name, array_ref, dtype=np.float32): """ Set the content of a device array. Parameters ---------- array_name: str Array name. This method will look for self.array_name. array_ref: array (numpy or GPU array) Array containing the data to copy to 'array_name'. dtype: numpy.dtype, optional Data type. Default is float32. """ if isinstance(array_ref, self._array_class): current_arr = getattr(self, array_name, None) setattr(self, "_old_" + array_name, current_arr) setattr(self, array_name, array_ref) elif isinstance(array_ref, np.ndarray): self.allocate_array(array_name, array_ref.shape, dtype=dtype) getattr(self, array_name).set(array_ref) else: raise ValueError("Expected numpy array or pycuda array") return getattr(self, array_name)
[docs] def get_array(self, array_name): return getattr(self, array_name, None)
# COMPAT. _init_arrays_to_none = init_arrays_to_none _recover_arrays_references = recover_arrays_references _allocate_array = allocate_array _set_array = set_array
[docs] def check_array(self, arr, expected_shape, expected_dtype="f", check_contiguous=True): """ Check whether a given array is suitable for being processed (shape, dtype, contiguous) """ if arr.shape != expected_shape: raise ValueError("Expected shape %s but got %s" % (str(expected_shape), str(arr.shape))) if arr.dtype != np.dtype(expected_dtype): raise ValueError("Expected data type %s but got %s" % (str(expected_dtype), str(arr.dtype))) if check_contiguous: if isinstance(arr, np.ndarray) and not (arr.flags["C_CONTIGUOUS"]): raise ValueError("Expected C-contiguous array") if isinstance(arr, self._array_class) and not arr.flags.c_contiguous: raise ValueError("Expected C-contiguous array")