Source code for nabu.preproc.phase

from math import pi
from bisect import bisect
import numpy as np
from ..utils import generate_powers, get_decay, check_supported, get_num_threads, deprecation_warning

#
from .ctf import CTFPhaseRetrieval

#


[docs] def lmicron_to_db(Lmicron, energy, distance): """ Utility to convert the "Lmicron" parameter of PyHST to a value of delta/beta. Parameters ----------- Lmicron: float Length in microns, values of the parameter "PAGANIN_Lmicron" in PyHST2 parameter file. energy: float Energy in keV. distance: float Sample-detector distance in microns Notes -------- The conversion is done using the formula .. math:: L^2 = \\pi \\lambda D \\frac{\\delta}{\\beta} """ L2 = Lmicron**2 wavelength = 1.23984199e-3 / energy return L2 / (pi * wavelength * distance)
[docs] class PaganinPhaseRetrieval: available_padding_modes = ["zeros", "mean", "edge", "symmetric", "reflect"] powers = generate_powers() def __init__( self, shape, distance=0.5, energy=20, delta_beta=250.0, pixel_size=1e-6, padding="edge", margin=None, use_rfft=True, use_R2C=None, fftw_num_threads=None, ): """ Paganin Phase Retrieval for an infinitely distant point source. Formula (10) in [1]. Parameters ---------- shape: int or tuple Shape of each radio, in the format (num_rows, num_columns), i.e (size_vertical, size_horizontal). If an integer is provided, the shape is assumed to be square. distance : float, optional Propagation distance in meters. energy : float, optional Energy in keV. delta_beta: float, optional delta/beta ratio, where n = (1 - delta) + i*beta is the complex refractive index of the sample. pixel_size : float, optional Detector pixel size in meters. Default is 1e-6 (one micron) padding : str, optional Padding method. Available are "zeros", "mean", "edge", "sym", "reflect". Default is "edge". Please refer to the "Padding" section below for more details. margin: tuple, optional The user may provide integers values U, D, L, R as a tuple under the form ((U, D), (L, R)) (same syntax as numpy.pad()). The resulting filtered radio will have a size equal to (size_vertic - U - D, size_horiz - L - R). These values serve to create a "margin" for the filtering process, where U, D, L R are the margin of the Up, Down, Left and Right part, respectively. The filtering is done on a subset of the input radio. The subset size is (Nrows - U - D, Ncols - R - L). The margins is used to do the padding for the rest of the padded array. For example in one dimension, where ``padding="edge"``:: <------------------------------ padded_size ---------------------------> [padding=edge | padding=data | radio data | padding=data | padding=edge] <------ N2 ---><----- L -----><- (N-L-R)--><----- R -----><----- N2 ---> Some or all the values U, D, L, R can be 0. In this case, the padding of the parts related to the zero values will fall back to the one of "padding" parameter. For example, if padding="edge" and L, R are 0, then the left and right parts will be padded with the edges, while the Up and Down parts will be padded using the the user-provided margins of the radio, and the final data will have shape (Nrows - U - D, Ncols). Some or all the values U, D, L, R can be the string "auto". In this case, the values of U, D, L, R are automatically computed as a function of the Paganin filter width. use_rfft: bool, optional Whether to use Real-to-Complex (R2C) transform instead of standard Complex-to-Complex transform, providing better performances use_R2C: bool, optional DEPRECATED, use use_rfft instead fftw_num_threads: bool or None or int, optional Whether to use FFTW for speeding up FFT. Default is to use all available threads. You can pass a negative number to use N - fftw_num_threads cores. Important ---------- Mind the units! Distance and pixel size are in meters, and energy is in keV. Notes ------ **Padding methods** The phase retrieval is a convolution done in Fourier domain using FFT, so the Fourier transform size has to be at least twice the size of the original data. Mathematically, the data should be padded with zeros before being Fourier transformed. However, in practice, this can lead to artefacts at the edges (Gibbs effect) if the data does not go to zero at the edges. Apart from applying an apodization (Hamming, Blackman, etc), a common strategy to avoid these artefacts is to pad the data. In tomography reconstruction, this is usually done by replicating the last(s) value(s) of the edges ; but one can think of other methods: - "zeros": the data is simply padded with zeros. - "mean": the upper side of extended data is padded with the mean of the first row, the lower side with the mean of the last row, etc. - "edge": the data is padded by replicating the edges. This is the default mode. - "sym": the data is padded by mirroring the data with respect to its edges. See ``numpy.pad()``. - "reflect": the data is padded by reflecting the data with respect to its edges, including the edges. See ``numpy.pad()``. **Formulas** The radio is divided, in the Fourier domain, by the original "Paganin filter" `[1]`. .. math:: F = 1 + \\frac{\\delta}{\\beta} \\lambda D \\pi |k|^2 where k is the wave vector. References ----------- [1] D. Paganin Et Al, "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object", Journal of Microscopy, Vol 206, Part 1, 2002 """ self._init_parameters(distance, energy, pixel_size, delta_beta, padding) self._calc_shape(shape, margin) # COMPAT. if use_R2C is not None: deprecation_warning("'use_R2C' is replaced with 'use_rfft'", func_name="pag_r2c") # - self._get_fft(use_rfft, fftw_num_threads) self.compute_filter() def _init_parameters(self, distance, energy, pixel_size, delta_beta, padding): self.distance_cm = distance * 1e2 self.distance_micron = distance * 1e6 self.energy_kev = energy self.pixel_size_micron = pixel_size * 1e6 self.delta_beta = delta_beta self.wavelength_micron = 1.23984199e-3 / self.energy_kev self.padding = padding self.padding_methods = { "zeros": self._pad_zeros, "mean": self._pad_mean, "edge": self._pad_edge, "symmetric": self._pad_sym, "reflect": self._pad_reflect, } def _get_fft(self, use_rfft, fftw_num_threads): self.use_rfft = use_rfft self.use_R2C = use_rfft # Compat. fftw_num_threads = get_num_threads(fftw_num_threads) if self.use_rfft: self.fft_func = np.fft.rfft2 self.ifft_func = np.fft.irfft2 else: self.fft_func = np.fft.fft2 self.ifft_func = np.fft.ifft2 self.use_fftw = False if self.use_rfft and (fftw_num_threads > 0): # importing silx.math.fft creates opencl contexts all over the place # because of the silx.opencl.ocl singleton. # So, import silx as late as possible from silx.math.fft.fftw import FFTW, __have_fftw__ if __have_fftw__: self.use_fftw = True self.fftw = FFTW(shape=self.shape_padded, dtype="f", num_threads=fftw_num_threads) self.fft_func = self.fftw.fft self.ifft_func = self.fftw.ifft def _calc_shape(self, shape, margin): if np.isscalar(shape): shape = (shape, shape) else: assert len(shape) == 2 self.shape = shape self._set_margin_value(margin) self._calc_padded_shape() def _set_margin_value(self, margin): self.margin = margin if margin is None: self.shape_inner = self.shape self.use_margin = False self.margin = ((0, 0), (0, 0)) return self.use_margin = True try: ((U, D), (L, R)) = margin except ValueError: raise ValueError("Expected margin in the format ((U, D), (L, R))") for val in [U, D, L, R]: if isinstance(val, str) and val != "auto": raise ValueError("Expected either an integer, or 'auto'") if int(val) != val or val < 0: raise ValueError("Expected positive integers for margin values") self.shape_inner = (self.shape[0] - U - D, self.shape[1] - L - R) def _calc_padded_shape(self): """ Compute the padded shape. If margin = 0, length_padded = next_power(2*length). Otherwise : length_padded = next_power(2*(length - margins)) Principle ---------- <--------------------- nx_p ---------------------> | | original data | | < -- Pl - ><-- L -->< -- nx --><-- R --><-- Pr --> <----------- nx0 -----------> Pl, Pr : left/right padding length L, R : left/right margin nx : length of inner data (and length of final result) nx0 : length of original data nx_p : total length of padded data """ n_y, n_x = self.shape_inner n_y0, n_x0 = self.shape n_y_p = self._get_next_power(max(2 * n_y, n_y0)) n_x_p = self._get_next_power(max(2 * n_x, n_x0)) self.shape_padded = (n_y_p, n_x_p) self.data_padded = np.zeros((n_y_p, n_x_p), dtype=np.float64) ((U, D), (L, R)) = self.margin n_y0, n_x0 = self.shape self.pad_top_len = (n_y_p - n_y0) // 2 self.pad_bottom_len = n_y_p - n_y0 - self.pad_top_len self.pad_left_len = (n_x_p - n_x0) // 2 self.pad_right_len = n_x_p - n_x0 - self.pad_left_len def _get_next_power(self, n): """ Given a number, get the closest (upper) number p such that p is a power of 2, 3, 5 and 7. """ idx = bisect(self.powers, n) if self.powers[idx - 1] == n: return n return self.powers[idx]
[docs] def compute_filter(self): nyp, nxp = self.shape_padded fftfreq = np.fft.rfftfreq if self.use_rfft else np.fft.fftfreq fy = np.fft.fftfreq(nyp, d=self.pixel_size_micron) fx = fftfreq(nxp, d=self.pixel_size_micron) self._coords_grid = np.add.outer(fy**2, fx**2) # k2 = self._coords_grid D = self.distance_micron L = self.wavelength_micron db = self.delta_beta self.paganin_filter = 1.0 / (1 + db * L * D * pi * k2)
[docs] def pad_with_values(self, data, top_val=0, bottom_val=0, left_val=0, right_val=0): """ Pad the data into `self.padded_data` with values. Parameters ---------- data: numpy.ndarray data (radio) top_val: float or numpy.ndarray, optional Value(s) to fill the top of the padded data with. bottom_val: float or numpy.ndarray, optional Value(s) to fill the bottom of the padded data with. left_val: float or numpy.ndarray, optional Value(s) to fill the left of the padded data with. right_val: float or numpy.ndarray, optional Value(s) to fill the right of the padded data with. """ self.data_padded.fill(0) Pu, Pd = self.pad_top_len, self.pad_bottom_len Pl, Pr = self.pad_left_len, self.pad_right_len self.data_padded[:Pu, :] = top_val self.data_padded[-Pd:, :] = bottom_val self.data_padded[:, :Pl] = left_val self.data_padded[:, -Pr:] = right_val self.data_padded[Pu:-Pd, Pl:-Pr] = data # Transform the data to the FFT layout self.data_padded = np.roll(self.data_padded, (-Pu, -Pl), axis=(0, 1))
def _pad_zeros(self, data): return self.pad_with_values(data, top_val=0, bottom_val=0, left_val=0, right_val=0) def _pad_mean(self, data): """ Pad the data at each border with a different constant value. The value depends on the padding size: - On the left, value = mean(first data column) - On the right, value = mean(last data column) - On the top, value = mean(first data row) - On the bottom, value = mean(last data row) """ return self.pad_with_values( data, top_val=np.mean(data[0, :]), bottom_val=np.mean(data[-1, :]), left_val=np.mean(data[:, 0]), right_val=np.mean(data[:, -1]), ) def _pad_numpy(self, data, mode): data_padded = np.pad( data, ((self.pad_top_len, self.pad_bottom_len), (self.pad_left_len, self.pad_right_len)), mode=mode ) # Transform the data to the FFT layout Pu, Pl = self.pad_top_len, self.pad_left_len return np.roll(data_padded, (-Pu, -Pl), axis=(0, 1)) def _pad_edge(self, data): self.data_padded = self._pad_numpy(data, mode="edge") def _pad_sym(self, data): self.data_padded = self._pad_numpy(data, mode="symmetric") def _pad_reflect(self, data): self.data_padded = self._pad_numpy(data, mode="reflect")
[docs] def pad_data(self, data, padding_method=None): padding_method = padding_method or self.padding check_supported(padding_method, self.available_padding_modes, "padding mode") if padding_method not in self.padding_methods: raise ValueError( "Unknown padding method %s. Available are: %s" % (padding_method, str(list(self.padding_methods.keys()))) ) pad_func = self.padding_methods[padding_method] pad_func(data) return self.data_padded
[docs] def apply_filter(self, radio, padding_method=None, output=None): self.pad_data(radio, padding_method=padding_method) radio_f = self.fft_func(self.data_padded) radio_f *= self.paganin_filter radio_filtered = self.ifft_func(radio_f).real s0, s1 = self.shape_inner ((U, _), (L, _)) = self.margin if output is None: return radio_filtered[U : U + s0, L : L + s1] else: output[:, :] = radio_filtered[U : U + s0, L : L + s1] return output
[docs] def lmicron_to_db(self, Lmicron): """ Utility to convert the "Lmicron" parameter of PyHST to a value of delta/beta. Please see the doc of nabu.preproc.phase.lmicron_to_db() """ return lmicron_to_db(Lmicron, self.energy_kev, self.distance_micron)
__call__ = apply_filter retrieve_phase = apply_filter
[docs] def compute_paganin_margin(shape, cutoff=1e3, **pag_kwargs): """ Compute the convolution margin to use when calling PaganinPhaseRetrieval class. Parameters ----------- shape: tuple Detector shape in the form (n_z, n_x) """ P = PaganinPhaseRetrieval(shape, **pag_kwargs) ifft_func = np.fft.irfft2 if P.use_rfft else np.fft.ifft2 conv_kernel = ifft_func(P.paganin_filter) vmax = conv_kernel[0, 0] v_margin = get_decay(conv_kernel[:, 0], cutoff=cutoff, vmax=vmax) h_margin = get_decay(conv_kernel[0, :], cutoff=cutoff, vmax=vmax) # If the Paganin filter is very narrow, then the corresponding convolution # kernel is constant, and np.argmax() gives 0 (when it should give the max value) if v_margin == 0: v_margin = shape[0] if h_margin == 0: h_margin = shape[1] return v_margin, h_margin