Source code for nabu.reconstruction.fbp_base

import numpy as np
from ..utils import updiv, nextpow2, convert_index, deprecation_warning
from ..processing.processing_base import ProcessingBase
from .filtering import SinoFilter
from .sinogram import SinoMult
from .sinogram import get_extended_sinogram_width


[docs] class BackprojectorBase: """ Base class for backprojectors. """ backend = "numpy" default_padding_mode = "zeros" kernel_name = "backproj" default_extra_options = { "padding_mode": None, "axis_correction": None, "centered_axis": False, "clip_outer_circle": False, "scale_factor": None, "filter_cutoff": 1.0, } kernel_filename = None backend_processing_class = ProcessingBase SinoFilterClass = SinoFilter SinoMultClass = SinoMult _sino_filter_other_options = {} def __init__( self, sino_shape, slice_shape=None, angles=None, rot_center=None, padding_mode=None, halftomo=False, filter_name=None, slice_roi=None, scale_factor=None, extra_options=None, backend_options=None, ): """ Initialize a Backprojector. Parameters ----------- sino_shape: tuple Shape of the sinogram, in the form `(n_angles, detector_width)` (for backprojecting one sinogram) or `(n_sinos, n_angles, detector_width)`. slice_shape: int or tuple, optional Shape of the slice. By default, the slice shape is (n_x, n_x) where `n_x = detector_width` angles: array-like, optional Rotation anles in radians. By default, angles are equispaced between [0, pi[. rot_center: float, optional Rotation axis position. Default is `(detector_width - 1)/2.0` padding_mode: str, optional Padding mode when filtering the sinogram. Can be "zeros" (default) or "edges". filter_name: str, optional Name of the filter for filtered-backprojection. slice_roi: tuple, optional. Whether to backproject in a restricted area. If set, it must be in the form (start_x, end_x, start_y, end_y). `end_x` and `end_y` are non inclusive ! For example if the detector has 2048 pixels horizontally, then you can choose `start_x=0` and `end_x=2048`. If one of the value is set to None, it is replaced with a default value (0 for start, n_x and n_y for end) scale_factor: float, optional Scaling factor for backprojection. For example, to get the linear absorption coefficient in 1/cm, this factor has to be set as the pixel size in cm. DEPRECATED - please use this parameter in "extra_options" extra_options: dict, optional Advanced extra options. See the "Extra options" section for more information. backend_options: dict, optional OpenCL/Cuda options passed to the OpenCLProcessing or CudaProcessing class. Other parameters ----------------- extra_options: dict, optional Dictionary with a set of advanced options. The default are the following: - "padding_mode": "zeros" Padding mode when filtering the sinogram. Can be "zeros" or "edges". DEPRECATED - please use "padding_mode" directly in parameters. - "axis_correction": None Whether to set a correction for the rotation axis. If set, this should be an array with as many elements as the number of angles. This is useful when there is an horizontal displacement of the rotation axis. - centered_axis: bool Whether to "center" the slice on the rotation axis position. If set to True, then the reconstructed region is centered on the rotation axis. - scale_factor: float Scaling factor for backprojection. For example, to get the linear absorption coefficient in 1/cm, this factor has to be set as the pixel size in cm. - clip_outer_circle: False Whether to set to zero the pixels outside the reconstruction mask - filter_cutoff: float Cut-off frequency usef for Fourier filter. Default is 1.0 """ self._processing = self.backend_processing_class(**(backend_options or {})) self._configure_extra_options(scale_factor, padding_mode, extra_options=extra_options) self._check_textures_availability() self._init_geometry(sino_shape, slice_shape, angles, rot_center, halftomo, slice_roi) self._init_filter(filter_name) self._allocate_memory() self._compute_angles() self._compile_kernels() def _configure_extra_options(self, scale_factor, padding_mode, extra_options=None): extra_options = extra_options or {} # compat. scale_factor = None if scale_factor is not None: deprecation_warning( "Please use the parameter 'scale_factor' in the 'extra_options' dict", do_print=True, func_name="fbp_scale_factor", ) scale_factor = extra_options.get("scale_factor", None) or scale_factor or 1.0 # if "padding_mode" in extra_options: deprecation_warning( "Please use 'padding_mode' directly in Backprojector arguments, not in 'extra_options'", do_print=True, func_name="fbp_padding_mode", ) # self._backproj_scale_factor = scale_factor self._axis_array = None self.extra_options = self.default_extra_options.copy() self.extra_options.update(extra_options) self.padding_mode = padding_mode or self.extra_options["padding_mode"] or self.default_padding_mode self._axis_array = self.extra_options["axis_correction"] def _init_geometry(self, sino_shape, slice_shape, angles, rot_center, halftomo, slice_roi): if slice_shape is not None and slice_roi is not None: raise ValueError("slice_shape and slice_roi cannot be used together") self.sino_shape = sino_shape if len(sino_shape) == 2: n_angles, dwidth = sino_shape else: raise ValueError("Expected 2D sinogram") self.dwidth = dwidth self.halftomo = halftomo if rot_center is None: if halftomo: raise ValueError("Need to know 'rot_center' when using halftomo") rot_center = (self.dwidth - 1) / 2.0 self.rot_center = rot_center self._set_slice_shape(slice_shape) self.axis_pos = self.rot_center self._set_angles(angles, n_angles) self._set_slice_roi(slice_roi) # # offset = start - move # move = 0 if not(centered_axis) else start + (n-1)/2. - c if self.extra_options["centered_axis"]: self.offsets = { "x": self.rot_center - (self.n_x - 1) / 2.0, "y": self.rot_center - (self.n_y - 1) / 2.0, } # self._set_axis_corr() def _set_slice_shape(self, slice_shape): if not (self.halftomo): n_x = n_y = self.dwidth else: n_x = n_y = get_extended_sinogram_width(self.dwidth, self.rot_center) if slice_shape is not None: if np.isscalar(slice_shape): slice_shape = (slice_shape, slice_shape) n_y, n_x = slice_shape self.n_x = n_x self.n_y = n_y self.slice_shape = (n_y, n_x) def _set_angles(self, angles, n_angles): self.n_angles = n_angles if angles is None: angles = n_angles if np.isscalar(angles): end_angle = np.pi if not (self.halftomo) else 2 * np.pi take_end_angle = self.halftomo angles = np.linspace(0, end_angle, angles, take_end_angle) else: assert len(angles) == self.n_angles, "expected %d angles but got %d" % (len(angles), self.n_angles) self.angles = angles def _set_slice_roi(self, slice_roi): self.offsets = {"x": 0, "y": 0} self.slice_roi = slice_roi if slice_roi is None: return start_x, end_x, start_y, end_y = slice_roi # convert negative indices start_x = convert_index(start_x, self.n_x, 0) start_y = convert_index(start_y, self.n_y, 0) end_x = convert_index(end_x, self.n_x, self.n_x) end_y = convert_index(end_y, self.n_y, self.n_y) self.slice_shape = (end_y - start_y, end_x - start_x) self.n_x = self.slice_shape[-1] self.n_y = self.slice_shape[-2] self.offsets = {"x": start_x, "y": start_y} def _allocate_memory(self): # 1D textures are not supported in pyopencl self.h_msin = np.zeros((1, self.n_angles), "f") self.h_cos = np.zeros((1, self.n_angles), "f") # self._d_sino = self._processing.allocate_array("d_sino", self.sino_shape, "f") self._processing.init_arrays_to_none(["_d_slice", "d_sino"]) def _compute_angles(self): self.h_cos[0] = np.cos(self.angles).astype("f") self.h_msin[0] = (-np.sin(self.angles)).astype("f") self._d_msin = self._processing.set_array("d_msin", self.h_msin[0]) self._d_cos = self._processing.set_array("d_cos", self.h_cos[0]) if self._axis_correction is not None: self._d_axcorr = self._processing._set_array("d_axcorr", self._axis_correction) def _set_axis_corr(self): axcorr = self.extra_options["axis_correction"] self._axis_correction = axcorr if axcorr is None: return if len(axcorr) != self.n_angles: raise ValueError("Expected %d angles but got %d" % (self.n_angles, len(axcorr))) self._axis_correction = np.zeros((1, self.n_angles), dtype=np.float32) self._axis_correction[0, :] = axcorr[:] # pylint: disable=E1136 def _init_filter(self, filter_name): self.filter_name = filter_name if filter_name in ["None", "none"]: self.sino_filter = None return sinofilter_other_kwargs = {} if self.backend != "numpy": sinofilter_other_kwargs["%s_options" % self.backend] = {"ctx": self._processing.ctx} self.sino_filter = self.SinoFilterClass( self.sino_shape, filter_name=self.filter_name, padding_mode=self.padding_mode, extra_options={"cutoff": self.extra_options.get("filter_cutoff", 1.0)}, **sinofilter_other_kwargs, ) if self.halftomo: # When doing half-tomography, each projections is seen "twice". # SinoFilter normalizes with pi/n_angles, but in half-tomography here n_angles is somehow halved. # TODO it should even be "n_turns", where n_turns can be computed from the angles self.sino_filter.set_filter(self.sino_filter.filter_f * (self.n_angles / np.pi * 2))
[docs] def reset_rot_center(self, rot_center): """ Define a new center of rotation for the current backprojector. """ self.rot_center = rot_center self.axis_pos = rot_center # See kernels signature of backproj.cu and backproj.cl. # The ifdef makes things a bit more complicated proj_arg_idx = 4 if self.backend == "cuda" and self._use_textures: proj_arg_idx = 3 self.kern_proj_args[proj_arg_idx] = rot_center if self.extra_options["centered_axis"]: self.offsets = { "x": self.rot_center - (self.n_x - 1) / 2.0, "y": self.rot_center - (self.n_y - 1) / 2.0, } self.kern_proj_args[proj_arg_idx + 3] = self.offsets["x"] self.kern_proj_args[proj_arg_idx + 4] = self.offsets["y"]
# Try to factorize some code between Cuda and OpenCL # Not ideal, as cuda uses "grid" = n_blocks_launched, # while OpenCL uses "global_size" = n_threads_launched def _get_kernel_options(self): sourcemodule_options = [] # We use blocks of 16*16 (see why in kernel doc), and one thread # handles 2 pixels per dimension. block = (16, 16, 1) # The Cuda kernel is optimized for 16x16 threads blocks # If one of the dimensions is smaller than 16, it has to be addapted if self.n_x < 16 or self.n_y < 16: tpb_x = min(int(nextpow2(self.n_x)), 16) tpb_y = min(int(nextpow2(self.n_y)), 16) block = (tpb_x, tpb_y, 1) sourcemodule_options.append("-DSHARED_SIZE=%d" % (tpb_x * tpb_y)) grid = (updiv(updiv(self.n_x, block[0]), 2), updiv(updiv(self.n_y, block[1]), 2)) if self.extra_options["clip_outer_circle"]: sourcemodule_options.append("-DCLIP_OUTER_CIRCLE") shared_size = int(np.prod(block)) * 2 if self._axis_correction is not None: sourcemodule_options.append("-DDO_AXIS_CORRECTION") shared_size += int(np.prod(block)) shared_size *= 4 # sizeof(float32) self._kernel_options = { "kernel_name": self.kernel_name, "sourcemodule_options": sourcemodule_options, "grid": grid, "block": block, "shared_size": shared_size, } def _prepare_kernel_args(self): self._get_kernel_options() self.kern_proj_args = [ None, # output d_slice holder None, # placeholder for sino (OpenCL or Cuda+no-texture) np.int32(self.n_angles), np.int32(self.dwidth), np.float32(self.axis_pos), np.int32(self.n_x), np.int32(self.n_y), np.float32(self.offsets["x"]), np.float32(self.offsets["y"]), self._d_cos, self._d_msin, np.float32(self._backproj_scale_factor), ] if self._axis_correction is not None: self.kern_proj_args.insert(-1, self._d_axcorr) self.kern_proj_kwargs = { "grid": self._kernel_options["grid"], "block": self._kernel_options["block"], } def _set_output(self, output, check=False): self._output_is_ndarray = isinstance(output, np.ndarray) if output is None or self._output_is_ndarray: self._processing.allocate_array("_d_slice", self.slice_shape, dtype=np.float32) return self._processing._d_slice # pylint: disable=E1101 if check: assert output.dtype == np.float32 assert output.shape == self.slice_shape, "Expected output shape %s but got %s" % ( self.slice_shape, output.shape, ) return output def _set_kernel_slice_arg(self, d_slice): self.kern_proj_args[0] = d_slice
[docs] def backproj(self, sino, output=None, do_checks=True): if self.halftomo and self.rot_center < self.dwidth: self.sino_mult.prepare_sino(sino) self._transfer_to_texture(sino) d_slice = self._set_output(output, check=do_checks) self._set_kernel_slice_arg(d_slice) self.gpu_projector(*self.kern_proj_args, **self.kern_proj_kwargs) if output is not None and not (self._output_is_ndarray): return output else: return self._processing._d_slice.get(ary=output)
[docs] def filtered_backprojection(self, sino, output=None): # if isinstance(sino, self._processing.array_class): d_sino = sino else: d_sino = self._processing.to_device("d_sino", sino) # if self.sino_filter is not None: filt_kwargs = {} # if a new device array was allocated for sinogram, then the filtering can overwrite it, # since it won't affect user argument if id(d_sino) != id(sino): filt_kwargs = {"output": d_sino} # sino_to_backproject = self.sino_filter(d_sino, **filt_kwargs) else: sino_to_backproject = d_sino return self.backproj(sino_to_backproject, output=output)
fbp = filtered_backprojection # shorthand def __repr__(self): res = "%s(sino_shape=%s, slice_shape=%s, rot_center=%.2f, halftomo=%s)" % ( self.__class__.__name__, str(self.sino_shape), str(self.slice_shape), self.rot_center, self.halftomo, ) return res