1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336 | import pint
from math import ceil
from typing import Optional, Union
from collections.abc import Iterable, Sized
from dataclasses import dataclass
import numpy
from nxtomo.paths import nxtomo
from tomoscan.factory import Factory
from tomoscan.identifier import VolumeIdentifier, ScanIdentifier
from tomoscan.esrf.scan.nxtomoscan import NXtomoScan
from ..pipeline.config_validators import (
boolean_validator,
convert_to_bool,
)
from ..utils import concatenate_dict, convert_str_to_tuple
from .overlap import OverlapStitchingStrategy
from .utils.utils import ShiftAlgorithm
from .definitions import StitchingType
from .alignment import AlignmentAxis1, AlignmentAxis2
_ureg = pint.get_application_registry()
# ruff: noqa: S105
KEY_IMG_REG_METHOD = "img_reg_method"
KEY_WINDOW_SIZE = "window_size"
KEY_LOW_PASS_FILTER = "low_pass"
KEY_HIGH_PASS_FILTER = "high_pass"
KEY_OVERLAP_SIZE = "overlap_size"
KEY_SIDE = "side"
OUTPUT_SECTION = "output"
INPUTS_SECTION = "inputs"
PRE_PROC_SECTION = "preproc"
POST_PROC_SECTION = "postproc"
INPUT_DATASETS_FIELD = "input_datasets"
INPUT_PIXEL_SIZE_MM = "pixel_size"
INPUT_VOXEL_SIZE_MM = "voxel_size"
STITCHING_SECTION = "stitching"
STITCHING_STRATEGY_FIELD = "stitching_strategy"
STITCHING_TYPE_FIELD = "type"
DATA_FILE_FIELD = "location"
OVERWRITE_RESULTS_FIELD = "overwrite_results"
DATA_PATH_FIELD = "data_path"
AXIS_0_POS_PX = "axis_0_pos_px"
AXIS_1_POS_PX = "axis_1_pos_px"
AXIS_2_POS_PX = "axis_2_pos_px"
AXIS_0_POS_MM = "axis_0_pos_mm"
AXIS_1_POS_MM = "axis_1_pos_mm"
AXIS_2_POS_MM = "axis_2_pos_mm"
AXIS_0_PARAMS = "axis_0_params"
AXIS_1_PARAMS = "axis_1_params"
AXIS_2_PARAMS = "axis_2_params"
FLIP_LR = "fliplr"
FLIP_UD = "flipud"
NEXUS_VERSION_FIELD = "nexus_version"
OUTPUT_DTYPE = "data_type"
OUTPUT_VOLUME = "output_volume"
STITCHING_SLICES = "slices"
CROSS_CORRELATION_SLICE_FIELD = "slice_index_for_correlation"
RESCALE_FRAMES = "rescale_frames"
RESCALE_PARAMS = "rescale_params"
KEY_RESCALE_MIN_PERCENTILES = "rescale_min_percentile"
KEY_RESCALE_MAX_PERCENTILES = "rescale_max_percentile"
ALIGNMENT_AXIS_2_FIELD = "alignment_axis_2"
ALIGNMENT_AXIS_1_FIELD = "alignment_axis_1"
PAD_MODE_FIELD = "pad_mode"
AVOID_DATA_DUPLICATION_FIELD = "avoid_data_duplication"
# SLURM
SLURM_SECTION = "slurm"
SLURM_PARTITION = "partition"
SLURM_MEM = "memory"
SLURM_COR_PER_TASKS = "cpu-per-task"
SLURM_NUMBER_OF_TASKS = "n_tasks"
SLURM_N_JOBS = "n_jobs"
SLURM_OTHER_OPTIONS = "other_options"
SLURM_PREPROCESSING_COMMAND = "python_venv"
SLURM_MODULES_TO_LOADS = "modules"
SLURM_CLEAN_SCRIPTS = "clean_scripts"
SLURM_JOB_NAME = "job_name"
# normalization by sample
NORMALIZATION_BY_SAMPLE_SECTION = "normalization_by_sample"
NORMALIZATION_BY_SAMPLE_ACTIVE_FIELD = "active"
NORMALIZATION_BY_SAMPLE_METHOD = "method"
NORMALIZATION_BY_SAMPLE_SIDE = "side"
NORMALIZATION_BY_SAMPLE_MARGIN = "margin"
NORMALIZATION_BY_SAMPLE_WIDTH = "width"
# kernel extra options
STITCHING_KERNELS_EXTRA_PARAMS = "stitching_kernels_extra_params"
KEY_THRESHOLD_FREQUENCY = "threshold_frequency"
CROSS_CORRELATION_METHODS_AXIS_0 = {
"": "", # for display
ShiftAlgorithm.NABU_FFT.value: "will call nabu `find_shift_correlate` function - shift search in fourier space",
ShiftAlgorithm.SKIMAGE.value: "use scikit image `phase_cross_correlation` function in real space",
ShiftAlgorithm.NONE.value: "no shift research is done. will only get shift from motor positions",
}
CROSS_CORRELATION_METHODS_AXIS_2 = CROSS_CORRELATION_METHODS_AXIS_0.copy()
CROSS_CORRELATION_METHODS_AXIS_2.update(
{
ShiftAlgorithm.CENTERED.value: "a fast and simple auto-CoR method. It only works when the CoR is not far from the middle of the detector. It does not work for half-tomography.",
ShiftAlgorithm.GLOBAL.value: "a slow but robust auto-CoR.",
ShiftAlgorithm.GROWING_WINDOW.value: "automatically find the CoR with a sliding-and-growing window. You can tune the option with the parameter 'cor_options'.",
ShiftAlgorithm.SLIDING_WINDOW.value: "semi-automatically find the CoR with a sliding window. You have to specify on which side the CoR is (left, center, right). Please see the 'cor_options' parameter.",
ShiftAlgorithm.COMPOSITE_COARSE_TO_FINE.value: "Estimate CoR from composite multi-angle images. Only works for 360 degrees scans.",
ShiftAlgorithm.SINO_COARSE_TO_FINE.value: "Estimate CoR from sinogram. Only works for 360 degrees scans.",
}
)
SECTIONS_COMMENTS = {
STITCHING_SECTION: "section dedicated to stich parameters\n",
OUTPUT_SECTION: "section dedicated to output parameters\n",
INPUTS_SECTION: "section dedicated to inputs\n",
SLURM_SECTION: "section didicated to slurm. If you want to run locally avoid setting 'partition or remove this section'",
NORMALIZATION_BY_SAMPLE_SECTION: "section dedicated to normalization by a sample. If activate each frame can be normalized by a sample of the frame",
}
DEFAULT_SHIFT_ALG_AXIS_0 = "nabu-fft"
DEFAULT_SHIFT_ALG_AXIS_2 = "sliding-window"
_shift_algs_axis_0 = "\n + ".join(
[f"{key}: {value}" for key, value in CROSS_CORRELATION_METHODS_AXIS_0.items()]
)
_shift_algs_axis_2 = "\n + ".join(
[f"{key}: {value}" for key, value in CROSS_CORRELATION_METHODS_AXIS_2.items()]
)
HELP_SHIFT_PARAMS = f"""options for shifts algorithms as `key1=value1,key2=value2`. For now valid keys are:
- {KEY_OVERLAP_SIZE}: size to apply stitching. If not provided will take the largest size possible'.
- {KEY_IMG_REG_METHOD}: algorithm to use to find overlaps between the different sections. Possible values are \n * for axis 0: {_shift_algs_axis_0}\n * and for axis 2: {_shift_algs_axis_2}
- {KEY_LOW_PASS_FILTER}: low pass filter value for filtering frames before shift research
- {KEY_HIGH_PASS_FILTER}: high pass filter value for filtering frames before shift research"""
def _str_to_dict(my_str: Union[str, dict]):
"""convert a string as key_1=value_2;key_2=value_2 to a dict"""
if isinstance(my_str, dict):
return my_str
res = {}
for key_value in filter(None, my_str.split(";")):
key, value = key_value.split("=")
res[key] = value
return res
def _dict_to_str(ddict: dict):
return ";".join([f"{key!s}={value!s}" for key, value in ddict.items()])
def str_to_shifts(my_str: Optional[str]) -> Union[str, tuple]:
if my_str is None:
return None
elif isinstance(my_str, str):
my_str = my_str.replace(" ", "")
my_str = my_str.lstrip("[").lstrip("(")
my_str = my_str.rstrip("]").lstrip(")")
if my_str == "":
return None
try:
shift = ShiftAlgorithm(my_str)
except ValueError:
shifts_as_str = filter(None, my_str.replace(";", ",").split(","))
return [float(shift) for shift in shifts_as_str]
else:
return shift
elif isinstance(my_str, (tuple, list)):
return [float(shift) for shift in my_str]
else:
raise TypeError("Only str or tuple of str expected expected")
def _valid_stitching_kernels_params(my_dict: Union[dict, str]):
if isinstance(my_dict, str):
my_dict = _str_to_dict(my_str=my_dict)
valid_keys = (KEY_THRESHOLD_FREQUENCY, KEY_SIDE)
for key in my_dict:
if key not in valid_keys:
raise KeyError(f"{key} is a unrecognized key")
return my_dict
def _valid_shifts_params(my_dict: Union[dict, str]):
if isinstance(my_dict, str):
my_dict = _str_to_dict(my_str=my_dict)
valid_keys = (
KEY_WINDOW_SIZE,
KEY_IMG_REG_METHOD,
KEY_OVERLAP_SIZE,
KEY_HIGH_PASS_FILTER,
KEY_LOW_PASS_FILTER,
KEY_SIDE,
)
for key in my_dict:
if key not in valid_keys:
raise KeyError(f"{key} is a unrecognized key")
return my_dict
def _slices_to_list_or_slice(my_str: Optional[str]) -> Union[str, slice]:
if my_str is None:
return None
if isinstance(my_str, (tuple, list)):
if len(my_str) == 2:
return slice(int(my_str[0]), int(my_str[1]))
elif len(my_str) == 3:
return slice(int(my_str[0]), int(my_str[1]), int(my_str[2]))
else:
raise ValueError("expect at most free values to define a slice")
assert isinstance(my_str, str), f"wrong type. Get {my_str}, {type(my_str)}"
my_str = my_str.replace(" ", "")
if ":" in my_str:
split_string = my_str.split(":")
start = int(split_string[0])
stop = int(split_string[1])
if len(split_string) == 2:
step = None
elif len(split_string) == 3:
step = int(split_string[2])
else:
raise ValueError(f"unable to interpret `slices` parameter: {my_str}")
return slice(start, stop, step)
else:
my_str.replace(",", ";")
return list(filter(None, my_str.split(";")))
def _scalar_or_tuple_to_bool_or_tuple_of_bool(my_str: Union[bool, tuple, str], default=False):
if isinstance(my_str, bool):
return my_str
elif isinstance(my_str, str):
my_str = my_str.replace(" ", "")
my_str = my_str.lstrip("(").lstrip("[")
my_str = my_str.rstrip(")").lstrip("]")
my_str = my_str.replace(",", ";")
values = my_str.split(";")
values = tuple([convert_to_bool(value)[0] for value in values])
else:
values = my_str
if len(values) == 0:
return default
elif len(values) == 1:
return values[0]
else:
return values
from nabu.stitching.sample_normalization import Method, SampleSide
class NormalizationBySample:
def __init__(self) -> None:
self._active = False
self._method = Method.MEAN
self._margin = 0
self._side = SampleSide.LEFT
self._width = 30
def is_active(self):
return self._active
def set_is_active(self, active: bool):
assert isinstance(
active, bool
), f"active is expected to be a bool. Get {type(active)} instead. Value == {active}"
self._active = active
@property
def method(self) -> Method:
return self._method
@method.setter
def method(self, method: Union[Method, str]) -> None:
self._method = Method(method)
@property
def margin(self) -> int:
return self._margin
@margin.setter
def margin(self, margin: int):
assert isinstance(margin, int), f"margin is expected to be an int. Get {type(margin)} instead"
self._margin = margin
@property
def side(self) -> SampleSide:
return self._side
@side.setter
def side(self, side: Union[SampleSide, str]):
self._side = SampleSide(side)
@property
def width(self) -> int:
return self._width
@width.setter
def width(self, width: int):
assert isinstance(width, int), f"width is expected to be an int. Get {type(width)} instead"
@staticmethod
def from_dict(my_dict: dict):
sample_normalization = NormalizationBySample()
# active
active = my_dict.get(NORMALIZATION_BY_SAMPLE_ACTIVE_FIELD, None)
if active is not None:
active = active in (True, "True", 1, "1")
sample_normalization.set_is_active(active)
# method
method = my_dict.get(NORMALIZATION_BY_SAMPLE_METHOD, None)
if method is not None:
sample_normalization.method = method
# margin
margin = my_dict.get(NORMALIZATION_BY_SAMPLE_MARGIN, None)
if margin is not None:
sample_normalization.margin = int(margin)
# side
side = my_dict.get(NORMALIZATION_BY_SAMPLE_SIDE, None)
if side is not None:
sample_normalization.side = side
# width
width = my_dict.get(NORMALIZATION_BY_SAMPLE_WIDTH, None)
if width is not None:
sample_normalization.width = int(width)
return sample_normalization
def to_dict(self) -> dict:
return {
NORMALIZATION_BY_SAMPLE_ACTIVE_FIELD: self.is_active(),
NORMALIZATION_BY_SAMPLE_METHOD: self.method.value,
NORMALIZATION_BY_SAMPLE_MARGIN: self.margin,
NORMALIZATION_BY_SAMPLE_SIDE: self.side.value,
NORMALIZATION_BY_SAMPLE_WIDTH: self.width,
}
def __eq__(self, value: object, /) -> bool:
if not isinstance(value, NormalizationBySample):
return False
else:
return self.to_dict() == value.to_dict()
@dataclass
class SlurmConfig:
"""configuration for slurm jobs"""
partition: str = "" # note: must stay empty to make by default we don't use slurm (use by the configuration file)
mem: str = "128"
n_jobs: int = 1
other_options: str = ""
preprocessing_command: str = ""
modules_to_load: tuple = tuple()
clean_script: bool = ""
n_tasks: int = 1
n_cpu_per_task: int = 4
job_name: str = ""
def __post_init__(self) -> None:
# make sure either 'modules' or 'preprocessing_command' is provided
if len(self.modules_to_load) > 0 and self.preprocessing_command not in (None, ""):
raise ValueError(
f"Either modules {SLURM_MODULES_TO_LOADS} or preprocessing_command {SLURM_PREPROCESSING_COMMAND} can be provided. Not both."
)
def to_dict(self) -> dict:
"""dump configuration to dict"""
return {
SLURM_PARTITION: self.partition if self.partition is not None else "",
SLURM_MEM: self.mem,
SLURM_N_JOBS: self.n_jobs,
SLURM_OTHER_OPTIONS: self.other_options,
SLURM_PREPROCESSING_COMMAND: self.preprocessing_command,
SLURM_MODULES_TO_LOADS: self.modules_to_load,
SLURM_CLEAN_SCRIPTS: self.clean_script,
SLURM_NUMBER_OF_TASKS: self.n_tasks,
SLURM_COR_PER_TASKS: self.n_cpu_per_task,
SLURM_JOB_NAME: self.job_name,
}
@staticmethod
def from_dict(config: dict):
return SlurmConfig(
partition=config.get(
SLURM_PARTITION, None
), # warning: never set a default value. Would generate infinite loop from slurm call
mem=config.get(SLURM_MEM, "32GB"),
n_jobs=int(config.get(SLURM_N_JOBS, 10)),
other_options=config.get(SLURM_OTHER_OPTIONS, ""),
n_tasks=config.get(SLURM_NUMBER_OF_TASKS, 1),
n_cpu_per_task=config.get(SLURM_COR_PER_TASKS, 4),
preprocessing_command=config.get(SLURM_PREPROCESSING_COMMAND, ""),
modules_to_load=convert_str_to_tuple(config.get(SLURM_MODULES_TO_LOADS, "")),
clean_script=convert_to_bool(config.get(SLURM_CLEAN_SCRIPTS, False))[0],
job_name=config.get(SLURM_JOB_NAME, ""),
)
def _cast_shift_to_str(shifts: Union[tuple, numpy.ndarray, str, None]) -> str:
if shifts is None:
return ""
elif isinstance(shifts, ShiftAlgorithm):
return shifts.value
elif isinstance(shifts, str):
return shifts
elif isinstance(shifts, (tuple, list, numpy.ndarray)):
return ";".join([str(value) for value in shifts])
else:
raise TypeError(f"unexpected type: {type(shifts)}")
@dataclass
class StitchingConfiguration:
"""
bass class to define stitching configuration
"""
axis_0_pos_px: Union[tuple, str, None]
"position along axis 0 in absolute. unit: px"
axis_1_pos_px: Union[tuple, str, None]
"position along axis 1 in absolute. unit: px"
axis_2_pos_px: Union[tuple, str, None]
"position along axis 2 in absolute. unit: px"
axis_0_pos_mm: Union[tuple, str, None] = None
"position along axis 0 in absolute. unit: mm"
axis_1_pos_mm: Union[tuple, str, None] = None
"position along axis 0 in absolute. unit: mm"
axis_2_pos_mm: Union[tuple, str, None] = None
"position along axis 0 in absolute. unit: mm"
axis_0_params: dict = None
axis_1_params: dict = None
axis_2_params: dict = None
slurm_config: SlurmConfig = None
flip_lr: Union[tuple, bool] = False
"flip frame left-right. For scan this will be append to the NXtransformations of the detector"
flip_ud: Union[tuple, bool] = False
"flip frame up-down. For scan this will be append to the NXtransformations of the detector"
overwrite_results: bool = False
stitching_strategy: OverlapStitchingStrategy = OverlapStitchingStrategy.COSINUS_WEIGHTS
stitching_kernels_extra_params: dict = None
slice_for_cross_correlation: Union[str, int] = "middle"
# opts for rescaling frame during stitching
rescale_frames: bool = False
rescale_params: dict = None
normalization_by_sample: NormalizationBySample = None
duplicate_data: bool = True
"""when possible (for HDF5) avoid duplicating data as-much-much-as-possible. Overlaping region between two frames will be duplicated. Remaining will be 'raw_data' for volume.
For projection flat field will be applied"""
@property
def stitching_type(self):
raise NotImplementedError("Base class")
def __post_init__(self):
if self.normalization_by_sample is None:
self.normalization_by_sample = NormalizationBySample()
@staticmethod
def get_description_dict() -> dict:
def get_pos_info(axis, unit, alternative):
return f"position over {axis} in {unit}. If provided {alternative} must be set to blank. If none provided then will try to get information from existing metadata"
def get_default_shift_params(window_size=None, shift_alg=None) -> str:
return ";".join(
[
f"{KEY_WINDOW_SIZE}={window_size or ''}",
f"{KEY_IMG_REG_METHOD}={shift_alg or ''}",
]
)
return {
STITCHING_SECTION: {
STITCHING_TYPE_FIELD: {
"default": StitchingType.Z_PREPROC.value,
"help": f"stitching to be applied. Must be in {[st.value for st in StitchingType]}",
"type": "required",
},
STITCHING_STRATEGY_FIELD: {
"default": "cosinus weights",
"help": f"Policy to apply to compute the overlap area. Must be in {[ov.value for ov in OverlapStitchingStrategy]}.",
"type": "required",
},
CROSS_CORRELATION_SLICE_FIELD: {
"default": "middle",
"help": f"slice to use for image registration",
"type": "optional",
},
AXIS_0_POS_PX: {
"default": "",
"help": get_pos_info(axis=0, unit="pixel", alternative=AXIS_0_POS_MM),
"type": "optional",
},
AXIS_0_POS_MM: {
"default": "",
"help": get_pos_info(axis=1, unit="millimeter", alternative=AXIS_0_POS_PX),
"type": "optional",
},
AXIS_0_PARAMS: {
"default": get_default_shift_params(window_size=50, shift_alg=DEFAULT_SHIFT_ALG_AXIS_0),
"help": HELP_SHIFT_PARAMS,
"type": "optional",
},
AXIS_1_POS_PX: {
"default": "",
"help": get_pos_info(axis=1, unit="pixel", alternative=AXIS_1_POS_MM),
"type": "optional",
},
AXIS_1_POS_MM: {
"default": "",
"help": get_pos_info(axis=1, unit="millimeter", alternative=AXIS_1_POS_PX),
"type": "optional",
},
AXIS_1_PARAMS: {
"default": get_default_shift_params(),
"help": f"same as {AXIS_0_PARAMS} but for axis 1",
"type": "optional",
},
AXIS_2_POS_PX: {
"default": "",
"help": get_pos_info(axis=2, unit="pixel", alternative=AXIS_2_POS_MM),
"type": "optional",
},
AXIS_2_POS_MM: {
"default": "",
"help": get_pos_info(axis=2, unit="millimeter", alternative=AXIS_1_POS_PX),
"type": "optional",
},
AXIS_2_PARAMS: {
"default": get_default_shift_params(window_size=200, shift_alg=DEFAULT_SHIFT_ALG_AXIS_2),
"help": f"same as {AXIS_0_PARAMS} but for axis 2",
"type": "optional",
},
FLIP_LR: {
"default": False,
"help": "sometime scan or volume can have a left-right flip in frame (projection/slice) space. For recent NXtomo it should be handled automatically. But for volume you might need to request some flip.",
"type": "optional",
},
FLIP_UD: {
"default": False,
"help": "sometime scan or volume can have a up_down flip in frame (projection/slice) space. For recent NXtomo it should be handled automatically. But for volume you might need to request some flip.",
"type": "optional",
},
RESCALE_FRAMES: {
"default": False,
"help": "rescale each frame before applying stithcing",
"type": "advanced",
},
RESCALE_PARAMS: {
"default": "",
"help": f"parameters for rescaling frames as 'key1=value1;key_2=value2'. Valid Keys are {KEY_RESCALE_MIN_PERCENTILES} and {KEY_RESCALE_MAX_PERCENTILES}.",
"type": "advanced",
},
STITCHING_KERNELS_EXTRA_PARAMS: {
"default": "",
"help": f"advanced parameters for some stitching kernels. must be provided as 'key1=value1;key_2=value2'. Valid keys for now are: {KEY_THRESHOLD_FREQUENCY}: threshold to be used by the {OverlapStitchingStrategy.IMAGE_MINIMUM_DIVERGENCE.value} to split images low and high frequencies in Fourier space.",
"type": "advanced",
},
ALIGNMENT_AXIS_2_FIELD: {
"default": "center",
"help": f"In case frame have different frame widths how to align them (so along volume axis 2). Valid keys are {[aa.value for aa in AlignmentAxis2]}",
"type": "advanced",
},
PAD_MODE_FIELD: {
"default": "constant",
"help": f"pad mode to use for frame alignment. Valid values are 'constant', 'edge', 'linear_ramp', maximum', 'mean', 'median', 'minimum', 'reflect', 'symmetric', 'wrap', and 'empty'. See nupy.pad documentation for details",
"type": "advanced",
},
AVOID_DATA_DUPLICATION_FIELD: {
"default": "1",
"help": "When possible (stitching on reconstructed volume and HDF5 volume as input and output) create link to original data instead of duplicating it all. Warning: this will create relative link between the stiched volume and the original reconstructed volume.",
"validator": boolean_validator,
"type": "advanced",
},
},
OUTPUT_SECTION: {
OVERWRITE_RESULTS_FIELD: {
"default": "1",
"help": "What to do in the case where the output file exists.\nBy default, the output data is never overwritten and the process is interrupted if the file already exists.\nSet this option to 1 if you want to overwrite the output files.",
"validator": boolean_validator,
"type": "required",
},
},
INPUTS_SECTION: {
INPUT_DATASETS_FIELD: {
"default": "",
"help": f"Dataset to stitch together. Must be volume for {StitchingType.Z_PREPROC.value} or NXtomo for {StitchingType.Z_POSTPROC.value}",
"type": "required",
},
STITCHING_SLICES: {
"default": "",
"help": f"slices to be stitched. Must be given along axis 0 for pre-processing (z) and along axis 1 for post-processing (y)",
"type": "advanced",
},
},
SLURM_SECTION: {
SLURM_PARTITION: {
"default": "",
"help": "slurm partition to be used. If empty will run locally",
"type": "optional",
},
SLURM_MEM: {
"default": "32GB",
"help": "memory to allocate for each job",
"type": "optional",
},
SLURM_N_JOBS: {
"default": 10,
"help": "number of job to launch (split computation on N parallel jobs). Once all are finished we will concatenate the result.",
"type": "optional",
},
SLURM_COR_PER_TASKS: {
"default": 4,
"help": "number of cor per task launched",
"type": "optional",
},
SLURM_NUMBER_OF_TASKS: {
"default": 1,
"help": "(for parallel execution when possible). Split each job into this number of tasks",
"type": "optional",
},
SLURM_OTHER_OPTIONS: {
"default": "",
"help": "you can provide axtra options to slurm from this string",
"type": "optional",
},
SLURM_PREPROCESSING_COMMAND: {
"default": "",
"help": "python virtual environment to use",
"type": "optional",
},
SLURM_MODULES_TO_LOADS: {
"default": "tomotools/stable",
"help": "module to load",
"type": "optional",
},
},
NORMALIZATION_BY_SAMPLE_SECTION: {
NORMALIZATION_BY_SAMPLE_ACTIVE_FIELD: {
"default": False,
"help": "should we apply frame normalization by a sample or not",
"type": "advanced",
},
NORMALIZATION_BY_SAMPLE_METHOD: {
"default": "median",
"help": "method to compute the normalization value",
"type": "advanced",
},
NORMALIZATION_BY_SAMPLE_SIDE: {
"default": "left",
"help": "side to pick the sample",
"type": "advanced",
},
NORMALIZATION_BY_SAMPLE_MARGIN: {
"default": 0,
"help": "margin (in px) between border and sample",
"type": "advanced",
},
NORMALIZATION_BY_SAMPLE_WIDTH: {
"default": 30,
"help": "sample width (in px)",
"type": "advanced",
},
},
}
def to_dict(self):
"""dump configuration to a dict. Must be serializable because might be dump to HDF5 file"""
return {
SLURM_SECTION: self.slurm_config.to_dict() if self.slurm_config is not None else SlurmConfig().to_dict(),
STITCHING_SECTION: {
STITCHING_TYPE_FIELD: self.stitching_type.value,
CROSS_CORRELATION_SLICE_FIELD: str(self.slice_for_cross_correlation),
AXIS_0_POS_PX: _cast_shift_to_str(self.axis_0_pos_px),
AXIS_0_POS_MM: _cast_shift_to_str(self.axis_0_pos_mm),
AXIS_0_PARAMS: _dict_to_str(self.axis_0_params or {}),
AXIS_1_POS_PX: _cast_shift_to_str(self.axis_1_pos_px),
AXIS_1_POS_MM: _cast_shift_to_str(self.axis_1_pos_mm),
AXIS_1_PARAMS: _dict_to_str(self.axis_1_params or {}),
AXIS_2_POS_PX: _cast_shift_to_str(self.axis_2_pos_px),
AXIS_2_POS_MM: _cast_shift_to_str(self.axis_2_pos_mm),
AXIS_2_PARAMS: _dict_to_str(self.axis_2_params or {}),
STITCHING_STRATEGY_FIELD: OverlapStitchingStrategy(self.stitching_strategy).value,
FLIP_UD: self.flip_ud,
FLIP_LR: self.flip_lr,
RESCALE_FRAMES: self.rescale_frames,
RESCALE_PARAMS: _dict_to_str(self.rescale_params or {}),
STITCHING_KERNELS_EXTRA_PARAMS: _dict_to_str(self.stitching_kernels_extra_params or {}),
AVOID_DATA_DUPLICATION_FIELD: not self.duplicate_data,
},
OUTPUT_SECTION: {
OVERWRITE_RESULTS_FIELD: int(
self.overwrite_results,
),
},
NORMALIZATION_BY_SAMPLE_SECTION: self.normalization_by_sample.to_dict(),
}
class SingleAxisConfigMetaClass(type):
"""
Metaclass for single axis stitcher in order to aggregate dumper class and axis
warning: this class is used by tomwer as well
"""
def __new__(mcls, name, bases, attrs, axis=None):
# assert axis is not None
mcls = super().__new__(mcls, name, bases, attrs)
mcls._axis = axis
return mcls
@dataclass
class SingleAxisStitchingConfiguration(StitchingConfiguration, metaclass=SingleAxisConfigMetaClass):
"""
base class to define z-stitching parameters
"""
slices: Union[slice, tuple, None] = (
None # slices to reconstruct. Over axis 0 for pre-processing, over axis 1 for post-processing. If None will reconstruct all
)
alignment_axis_2: AlignmentAxis2 = AlignmentAxis2.CENTER
pad_mode: str = "constant" # pad mode to be used for alignment
@property
def axis(self) -> int:
# self._axis is defined by the metaclass
return self._axis
def settle_inputs(self) -> None:
self.settle_slices()
def settle_slices(self) -> tuple:
raise ValueError("Base class")
def get_output_object(self):
raise ValueError("Base class")
def to_dict(self):
if isinstance(self.slices, slice):
slices = f"{self.slices.start}:{self.slices.stop}:{self.slices.step}"
elif self.slices in ("", None):
slices = ""
else:
slices = ";".join(str(s) for s in self.slices)
return concatenate_dict(
super().to_dict(),
{
INPUTS_SECTION: {
STITCHING_SLICES: slices,
},
STITCHING_SECTION: {
ALIGNMENT_AXIS_2_FIELD: self.alignment_axis_2.value,
PAD_MODE_FIELD: self.pad_mode,
},
},
)
@dataclass
class PreProcessedSingleAxisStitchingConfiguration(SingleAxisStitchingConfiguration):
"""
base class to define z-stitching parameters
"""
input_scans: tuple = () # tuple of ScanBase
output_file_path: str = ""
output_data_path: str = ""
output_nexus_version: Optional[float] = None
pixel_size: Optional[float] = None
@property
def stitching_type(self) -> StitchingType:
if self.axis == 0:
return StitchingType.Z_PREPROC
elif self.axis == 1:
return StitchingType.Y_PREPROC
else:
raise ValueError(
"unexpected axis value. Only stitching over axis 0 (aka z) and 1 (aka y) are handled. Current axis value is %s",
self.axis,
)
def get_output_object(self):
return NXtomoScan(
scan=self.output_file_path,
entry=self.output_data_path,
)
def settle_inputs(self) -> None:
super().settle_inputs()
self.settle_input_scans()
def settle_input_scans(self):
self.input_scans = [
(
Factory.create_tomo_object_from_identifier(identifier)
if isinstance(identifier, (str, ScanIdentifier))
else identifier
)
for identifier in self.input_scans
]
def slice_idx_from_str_to_int(self, index):
if isinstance(index, str):
index = index.lower()
if index == "first":
return 0
elif index == "last":
return len(self.input_scans[0].projections) - 1
elif index == "middle":
return max(len(self.input_scans[0].projections) // 2 - 1, 0)
return int(index)
def settle_slices(self) -> tuple:
"""
interpret the slices to be stitched if needed
Nore: if slices is an instance of slice will redefine start and stop to avoid having negative indexes
:return: (slices:[slice,Iterable], n_proj:int)
:rtype: tuple
"""
slices = self.slices
if isinstance(slices, Sized) and len(slices) == 0:
# in this case will stitch them all
slices = None
if len(self.input_scans) == 0:
raise ValueError("No input scan provided")
if slices is None:
slices = slice(0, len(self.input_scans[0].projections), 1)
n_proj = slices.stop
elif isinstance(slices, slice):
# force slices indices to be positive
start = slices.start
if start < 0:
start += len(self.input_scans[0].projections) + 1
stop = slices.stop
if stop < 0:
stop += len(self.input_scans[0].projections) + 1
step = slices.step
if step is None:
step = 1
n_proj = ceil((stop - start) / step)
# update slices for iteration simplify things
slices = slice(start, stop, step)
elif isinstance(slices, (tuple, list)):
n_proj = len(slices)
slices = [self.slice_idx_from_str_to_int(s) for s in slices]
else:
raise TypeError(f"slices is expected to be a tuple or a lice. Not {type(slices)}")
self.slices = slices
return slices, n_proj
def to_dict(self):
if self.pixel_size is None:
pixel_size_mm = ""
else:
pixel_size_mm = (self.pixel_size * _ureg.meter).to(_ureg.millimeter).magnitude
return concatenate_dict(
super().to_dict(),
{
PRE_PROC_SECTION: {
DATA_FILE_FIELD: self.output_file_path,
DATA_PATH_FIELD: self.output_data_path,
NEXUS_VERSION_FIELD: self.output_nexus_version,
},
INPUTS_SECTION: {
INPUT_DATASETS_FIELD: ";".join(
[str(scan.get_identifier()) for scan in self.input_scans],
),
INPUT_PIXEL_SIZE_MM: pixel_size_mm,
},
},
)
@staticmethod
def get_description_dict() -> dict:
return concatenate_dict(
SingleAxisStitchingConfiguration.get_description_dict(),
{
PRE_PROC_SECTION: {
DATA_FILE_FIELD: {
"default": "",
"help": "output nxtomo file path",
"type": "required",
},
DATA_PATH_FIELD: {
"default": "",
"help": "output nxtomo data path",
"type": "required",
},
NEXUS_VERSION_FIELD: {
"default": "",
"help": "nexus version. If not provided will pick the latest one know",
"type": "required",
},
},
},
)
@classmethod
def from_dict(cls, config: dict):
if not isinstance(config, dict):
raise TypeError(f"config is expected to be a dict and not {type(config)}")
inputs_scans_str = config.get(INPUTS_SECTION, {}).get(INPUT_DATASETS_FIELD, None)
if inputs_scans_str in (None, ""):
input_scans = []
else:
input_scans = identifiers_as_str_to_instances(inputs_scans_str)
output_file_path = config.get(PRE_PROC_SECTION, {}).get(DATA_FILE_FIELD, None)
nexus_version = config.get(PRE_PROC_SECTION, {}).get(NEXUS_VERSION_FIELD, None)
if nexus_version in (None, ""):
nexus_version = nxtomo.LATEST_VERSION
else:
nexus_version = float(nexus_version)
pixel_size = config.get(INPUT_PIXEL_SIZE_MM, "").replace(" ", "")
if pixel_size == "":
pixel_size = None
else:
pixel_size = (float(pixel_size) * _ureg.millimeter).to_base_units().magnitude
return cls(
stitching_strategy=OverlapStitchingStrategy(
config[STITCHING_SECTION].get(
STITCHING_STRATEGY_FIELD,
OverlapStitchingStrategy.COSINUS_WEIGHTS,
),
),
axis_0_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_0_POS_PX, None)),
axis_0_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_0_POS_MM, None)),
axis_0_params=_valid_shifts_params(_str_to_dict(config[STITCHING_SECTION].get(AXIS_0_PARAMS, {}))),
axis_1_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_1_POS_PX, None)),
axis_1_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_1_POS_MM, None)),
axis_1_params=_valid_shifts_params(
_str_to_dict(
config[STITCHING_SECTION].get(AXIS_1_PARAMS, {}),
)
),
axis_2_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_2_POS_PX, None)),
axis_2_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_2_POS_MM, None)),
axis_2_params=_valid_shifts_params(
_str_to_dict(
config[STITCHING_SECTION].get(AXIS_2_PARAMS, {}),
)
),
input_scans=input_scans,
output_file_path=output_file_path,
output_data_path=config.get(PRE_PROC_SECTION, {}).get(DATA_PATH_FIELD, "entry_from_stitchig"),
overwrite_results=config[STITCHING_SECTION].get(OVERWRITE_RESULTS_FIELD, True),
output_nexus_version=nexus_version,
slices=_slices_to_list_or_slice(config[INPUTS_SECTION].get(STITCHING_SLICES, None)),
slurm_config=SlurmConfig.from_dict(config.get(SLURM_SECTION, {})),
slice_for_cross_correlation=config[STITCHING_SECTION].get(CROSS_CORRELATION_SLICE_FIELD, "middle"),
pixel_size=pixel_size,
flip_ud=_scalar_or_tuple_to_bool_or_tuple_of_bool(config[STITCHING_SECTION].get(FLIP_UD, False)),
flip_lr=_scalar_or_tuple_to_bool_or_tuple_of_bool(config[STITCHING_SECTION].get(FLIP_LR, False)),
rescale_frames=convert_to_bool(config[STITCHING_SECTION].get(RESCALE_FRAMES, 0))[0],
rescale_params=_str_to_dict(config[STITCHING_SECTION].get(RESCALE_PARAMS, {})),
stitching_kernels_extra_params=_valid_stitching_kernels_params(
_str_to_dict(
config[STITCHING_SECTION].get(STITCHING_KERNELS_EXTRA_PARAMS, {}),
)
),
alignment_axis_2=AlignmentAxis2(
config[STITCHING_SECTION].get(ALIGNMENT_AXIS_2_FIELD, AlignmentAxis2.CENTER)
),
pad_mode=config[STITCHING_SECTION].get(PAD_MODE_FIELD, "constant"),
duplicate_data=not _scalar_or_tuple_to_bool_or_tuple_of_bool(
config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False)
),
)
@dataclass
class PostProcessedSingleAxisStitchingConfiguration(SingleAxisStitchingConfiguration):
"""
base class to define z-stitching parameters
"""
input_volumes: tuple = () # tuple of VolumeBase
output_volume: Optional[VolumeIdentifier] = None
voxel_size: Optional[float] = None
alignment_axis_1: AlignmentAxis1 = AlignmentAxis1.CENTER
@property
def stitching_type(self) -> StitchingType:
if self.axis == 0:
return StitchingType.Z_POSTPROC
else:
raise ValueError(f"unexpected axis value. Only stitching over axis 0 (aka z) is handled. Not {self.axis}")
def get_output_object(self):
return self.output_volume
def settle_inputs(self) -> None:
super().settle_inputs()
self.settle_input_volumes()
def settle_input_volumes(self):
self.input_volumes = [
(
Factory.create_tomo_object_from_identifier(identifier)
if isinstance(identifier, (str, VolumeIdentifier))
else identifier
)
for identifier in self.input_volumes
]
def slice_idx_from_str_to_int(self, index):
if isinstance(index, str):
index = index.lower()
if index == "first":
return 0
elif index == "last":
return self.input_volumes[0].get_volume_shape()[1] - 1
elif index == "middle":
return max(self.input_volumes[0].get_volume_shape()[1] // 2 - 1, 0)
return int(index)
def settle_slices(self) -> tuple:
"""
interpret the slices to be stitched if needed
Nore: if slices is an instance of slice will redefine start and stop to avoid having negative indexes
:return: (slices:[slice,Iterable], n_proj:int)
:rtype: tuple
"""
slices = self.slices
if isinstance(slices, Sized) and len(slices) == 0:
# in this case will stitch them all
slices = None
if len(self.input_volumes) == 0:
raise ValueError("No input volume provided. Cannot settle slices")
if slices is None:
# before alignment was existing
# slices = slice(0, self.input_volumes[0].get_volume_shape()[1], 1)
slices = slice(
0,
max([volume.get_volume_shape()[1] for volume in self.input_volumes]),
1,
)
n_slices = slices.stop
if isinstance(slices, slice):
# force slices indices to be positive
start = slices.start
if start < 0:
start += max([volume.get_volume_shape()[1] for volume in self.input_volumes]) + 1
stop = slices.stop
if stop < 0:
stop += max([volume.get_volume_shape()[1] for volume in self.input_volumes]) + 1
step = slices.step
if step is None:
step = 1
n_slices = ceil((stop - start) / step)
# update slices for iteration simplify things
slices = slice(start, stop, step)
elif isinstance(slices, Iterable):
n_slices = len(slices)
slices = [self.slice_idx_from_str_to_int(s) for s in slices]
else:
raise TypeError(f"slices is expected to be a tuple or a slice. Not {type(slices)}")
self.slices = slices
return slices, n_slices
@classmethod
def from_dict(cls, config: dict):
if not isinstance(config, dict):
raise TypeError(f"config is expected to be a dict and not {type(config)}")
inputs_volumes_str = config.get(INPUTS_SECTION, {}).get(INPUT_DATASETS_FIELD, None)
if inputs_volumes_str in (None, ""):
input_volumes = []
else:
input_volumes = identifiers_as_str_to_instances(inputs_volumes_str)
overwrite_results = config[STITCHING_SECTION].get(OVERWRITE_RESULTS_FIELD, True) in ("1", True, "True", 1)
output_volume = config.get(POST_PROC_SECTION, {}).get(OUTPUT_VOLUME, None)
if output_volume is not None:
output_volume = Factory.create_tomo_object_from_identifier(output_volume)
output_volume.overwrite = overwrite_results
voxel_size = config.get(INPUTS_SECTION, {}).get(INPUT_VOXEL_SIZE_MM, "")
voxel_size = voxel_size.replace(" ", "")
if voxel_size == "":
voxel_size = None
else:
voxel_size = (float(voxel_size) * _ureg.millimeter).to_base_units().magnitude
# on the next section the one with a default value qre the optional one
return cls(
stitching_strategy=OverlapStitchingStrategy(
config[STITCHING_SECTION].get(
STITCHING_STRATEGY_FIELD,
OverlapStitchingStrategy.COSINUS_WEIGHTS,
),
),
axis_0_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_0_POS_PX, None)),
axis_0_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_0_POS_MM, None)),
axis_0_params=_valid_shifts_params(config[STITCHING_SECTION].get(AXIS_0_PARAMS, {})),
axis_1_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_1_POS_PX, None)),
axis_1_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_1_POS_MM, None)),
axis_1_params=_valid_shifts_params(config[STITCHING_SECTION].get(AXIS_1_PARAMS, {})),
axis_2_pos_px=str_to_shifts(config[STITCHING_SECTION].get(AXIS_2_POS_PX, None)),
axis_2_pos_mm=str_to_shifts(config[STITCHING_SECTION].get(AXIS_2_POS_MM, None)),
axis_2_params=_valid_shifts_params(config[STITCHING_SECTION].get(AXIS_2_PARAMS, {})),
input_volumes=input_volumes,
output_volume=output_volume,
overwrite_results=overwrite_results,
slices=_slices_to_list_or_slice(config[INPUTS_SECTION].get(STITCHING_SLICES, None)),
slurm_config=SlurmConfig.from_dict(config.get(SLURM_SECTION, {})),
voxel_size=voxel_size,
slice_for_cross_correlation=config[STITCHING_SECTION].get(CROSS_CORRELATION_SLICE_FIELD, "middle"),
flip_ud=_scalar_or_tuple_to_bool_or_tuple_of_bool(config[STITCHING_SECTION].get(FLIP_UD, False)),
flip_lr=_scalar_or_tuple_to_bool_or_tuple_of_bool(config[STITCHING_SECTION].get(FLIP_LR, False)),
rescale_frames=convert_to_bool(config[STITCHING_SECTION].get(RESCALE_FRAMES, 0))[0],
rescale_params=_str_to_dict(config[STITCHING_SECTION].get(RESCALE_PARAMS, {})),
stitching_kernels_extra_params=_valid_stitching_kernels_params(
_str_to_dict(
config[STITCHING_SECTION].get(STITCHING_KERNELS_EXTRA_PARAMS, {}),
)
),
alignment_axis_1=AlignmentAxis1(
config[STITCHING_SECTION].get(ALIGNMENT_AXIS_1_FIELD, AlignmentAxis1.CENTER)
),
alignment_axis_2=AlignmentAxis2(
config[STITCHING_SECTION].get(ALIGNMENT_AXIS_2_FIELD, AlignmentAxis2.CENTER)
),
pad_mode=config[STITCHING_SECTION].get(PAD_MODE_FIELD, "constant"),
duplicate_data=not _scalar_or_tuple_to_bool_or_tuple_of_bool(
config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False)
),
normalization_by_sample=NormalizationBySample.from_dict(config.get(NORMALIZATION_BY_SAMPLE_SECTION, {})),
)
def to_dict(self):
if self.voxel_size is None:
voxel_size_mm = ""
else:
voxel_size_mm = numpy.array((self.voxel_size * _ureg.meter).to(_ureg.millimeter).magnitude)
return concatenate_dict(
super().to_dict(),
{
INPUTS_SECTION: {
INPUT_DATASETS_FIELD: [volume.get_identifier().to_str() for volume in self.input_volumes],
INPUT_VOXEL_SIZE_MM: voxel_size_mm,
},
POST_PROC_SECTION: {
OUTPUT_VOLUME: (
self.output_volume.get_identifier().to_str() if self.output_volume is not None else ""
),
},
STITCHING_SECTION: {
ALIGNMENT_AXIS_1_FIELD: self.alignment_axis_1.value,
},
},
)
@staticmethod
def get_description_dict() -> dict:
return concatenate_dict(
SingleAxisStitchingConfiguration.get_description_dict(),
{
POST_PROC_SECTION: {
OUTPUT_VOLUME: {
"default": "",
"help": "identifier of the output volume. Like hdf5:volume:[file_path]?path=[data_path] for an HDF5 volume",
"type": "required",
},
},
STITCHING_SECTION: {
ALIGNMENT_AXIS_1_FIELD: {
"default": "center",
"help": f"alignment to apply over axis 1 if needed. Valid values are {[aa for aa in AlignmentAxis1]}",
"type": "advanced",
}
},
},
)
def identifiers_as_str_to_instances(list_identifiers_as_str: str) -> tuple:
# convert str to a list of str that should represent identifiers
if isinstance(list_identifiers_as_str, str):
list_identifiers_as_str = list_identifiers_as_str.lstrip("[").lstrip("(")
list_identifiers_as_str = list_identifiers_as_str.rstrip("]").rstrip(")")
identifiers_as_str = convert_str_to_tuple(list_identifiers_as_str.replace(";", ","))
else:
identifiers_as_str = list_identifiers_as_str
if identifiers_as_str is None:
return tuple()
# convert identifiers as string to IdentifierType instances
return tuple(
[Factory.create_tomo_object_from_identifier(identifier_as_str) for identifier_as_str in identifiers_as_str]
)
def dict_to_config_obj(config: dict):
if not isinstance(config, dict):
raise TypeError
stitching_type = config.get(STITCHING_SECTION, {}).get(STITCHING_TYPE_FIELD, None)
if stitching_type is None:
raise ValueError("Unable to find stitching type from config dict")
else:
stitching_type = StitchingType(stitching_type)
if stitching_type is StitchingType.Z_POSTPROC:
return PostProcessedZStitchingConfiguration.from_dict(config)
elif stitching_type is StitchingType.Z_PREPROC:
return PreProcessedZStitchingConfiguration.from_dict(config)
elif stitching_type is StitchingType.Y_PREPROC:
return PreProcessedYStitchingConfiguration.from_dict(config)
else:
raise NotImplementedError(f"stitching type {stitching_type.value} not handled yet")
def get_default_stitching_config(stitching_type: Optional[Union[StitchingType, str]]) -> tuple:
"""
Return a default configuration for doing stitching.
:param stitching_type: if None then return a configuration were use can provide inputs for any
of the stitching.
Else return config dict dedicated to a particular stitching
:return: (config, section comments)
"""
if stitching_type is None:
return concatenate_dict(z_postproc_stitching_config, z_preproc_stitching_config)
stitching_type = StitchingType(stitching_type)
if stitching_type is StitchingType.Z_POSTPROC:
return z_postproc_stitching_config
elif stitching_type is StitchingType.Z_PREPROC:
return z_preproc_stitching_config
elif stitching_type is StitchingType.Y_PREPROC:
return y_preproc_stitching_config
else:
raise NotImplementedError
class PreProcessedYStitchingConfiguration(PreProcessedSingleAxisStitchingConfiguration, axis=1):
pass
class PreProcessedZStitchingConfiguration(PreProcessedSingleAxisStitchingConfiguration, axis=0):
pass
class PostProcessedZStitchingConfiguration(PostProcessedSingleAxisStitchingConfiguration, axis=0):
pass
y_preproc_stitching_config = PreProcessedYStitchingConfiguration.get_description_dict()
z_preproc_stitching_config = PreProcessedZStitchingConfiguration.get_description_dict()
z_postproc_stitching_config = PostProcessedZStitchingConfiguration.get_description_dict()
|