Flatfied calibration

Inspiration from: https://scripts.iucr.org/cgi-bin/paper?S1600577523001157

Work done for ID31

There are 9 positions investigated on the detector each of them contains calibration data and a flatfield image. First of all define an object container containing position, calibration, …

[1]:
%matplotlib widget
import copy, time
from dataclasses import dataclass
import numpy
import h5py
from matplotlib.pyplot import subplots
import fabio
import pyFAI
from pyFAI.gui import jupyter
from pyFAI.gui.jupyter.calib import Calibration
from pyFAI.gui.cli_calibration import AbstractCalibration
t0 = time.perf_counter()
print(f"Running pyFAI version {pyFAI.version}")
WARNING:pyFAI.gui.matplotlib:matplotlib already loaded, setting its backend may not work
Running pyFAI version 2024.9.0-dev0
[2]:
polarization = 0.999
npt = 512
energy = 75 #keV
wavelength = 1e-10*pyFAI.units.hc/energy
detector = pyFAI.detector_factory("Pilatus2M_CdTe")
calibrant = pyFAI.calibrant.CALIBRANT_FACTORY("AgBh")
calibrant.wavelength = wavelength
[3]:
# Here we download the test data
from silx.resources import ExternalResources
downloader = ExternalResources("flatfield", "http://www.silx.org/pub/pyFAI/testimages")
all_files = downloader.getdir("flatfield_ID31.tar.bz2")
master_file = [i for i in all_files if i.endswith("calibration_0001.h5")][0]
print(master_file)
/tmp/flatfield_testdata_edgar1993a/flatfield_ID31.tar.bz2__content/flatfield_ID31/calibration_0001.h5
[4]:
@dataclass
class Position:
    """All data related to one of the position"""
    position: int
    calibration_idx: int
    scattering_idx: int
    coordinates: tuple=tuple()
    calibration_data: object=None
    scattering_data: object=None
    poni: object=None
    ai: object=None
    control_points: object=None
    flatfield: object=None

    @classmethod
    def init(cls, h5_file, position, calibration_idx, scattering_idx, detector_name="p3", positioners=("cncx","cncy","cncz")):
        with h5py.File(h5_file) as h:
            calibration_str = f"{calibration_idx}."
            scattering_str = f"{scattering_idx}."
            keys = list(h.keys())
            ids = [i for i in keys if i.startswith(calibration_str)]
            if ids:
                entry = h[ids[0]]
                calibration_data = entry[f"measurement/{detector_name}"][0]
                coordinates = tuple(entry[f"instrument/positioners/{positioner}"][()] for positioner in positioners)
            else:
                raise IndexError(f"no such Entry {calibration_idx}")
            ids = [i for i in keys if i.startswith(scattering_str)]
            if ids:
                entry = h[ids[0]]
                scattering_data = entry[f"measurement/{detector_name}"][0]
                coordinates = tuple(entry[f"instrument/positioners/{positioner}"][()] for positioner in positioners)
            else:
                raise IndexError(f"no such Entry {calibration_idx}")
        return cls(position, calibration_idx, scattering_idx, coordinates, calibration_data, scattering_data)

center = Position.init(master_file, "CC", 14, 13)
center
[4]:
Position(position='CC', calibration_idx=14, scattering_idx=13, coordinates=(6489.605, 20.0, 20.0), calibration_data=array([[2728, 2784, 2791, ..., 1582, 1636, 1544],
       [2664, 2663, 2829, ..., 1542, 1485, 1533],
       [2839, 2739, 2674, ..., 1542, 1581, 1478],
       ...,
       [3216, 2998, 3165, ..., 3048, 2992, 3125],
       [3121, 3252, 3299, ..., 3086, 3110, 2913],
       [3231, 3261, 3414, ..., 3099, 3039, 3020]], dtype=int32), scattering_data=array([[102929, 101856, 105155, ...,  36466,  36234,  35175],
       [100320,  98901, 104158, ...,  35047,  34531,  35871],
       [102334, 101772,  98380, ...,  35634,  35428,  34703],
       ...,
       [ 96866,  94780,  96978, ...,  95870,  94463,  97045],
       [ 97101,  99105,  99604, ...,  97634,  97246,  94603],
       [100027,  99620, 102607, ...,  95336,  96377,  94539]], dtype=int32), poni=None, ai=None, control_points=None, flatfield=None)
[5]:
data =[None,
       Position.init(master_file, 1, 1, 5),
       Position.init(master_file, 2, 7, 6),
       Position.init(master_file, 3, 8, 9),
       Position.init(master_file, 4, 11, 12),
       Position.init(master_file, 5, 14, 13),
       Position.init(master_file, 6, 15, 16),
       Position.init(master_file, 7, 17, 18),
       Position.init(master_file, 8, 20, 19),
       Position.init(master_file, 9, 21, 22)]
[6]:
#calculate the mask:
mask = -detector.mask.astype(int)
for p in data[1:]:
    numpy.minimum(mask, p.scattering_data, out=mask)
    numpy.minimum(mask, p.calibration_data, out=mask)
detector.mask = (mask<0).astype(numpy.int8)
[7]:
#display scattering:
fig, ax = subplots(3,3, figsize=(12,12))
jupyter.display(data[1].calibration_data, ax=ax[0,2])
jupyter.display(data[2].calibration_data, ax=ax[0,1])
jupyter.display(data[3].calibration_data, ax=ax[0,0])
jupyter.display(data[4].calibration_data, ax=ax[1,0])
jupyter.display(data[5].calibration_data, ax=ax[1,1])
jupyter.display(data[6].calibration_data, ax=ax[1,2])
jupyter.display(data[7].calibration_data, ax=ax[2,2])
jupyter.display(data[8].calibration_data, ax=ax[2,1])
jupyter.display(data[9].calibration_data, ax=ax[2,0])
pass

Calibration of the central position

[16]:
calib = Calibration(center.calibration_data,
                    calibrant=calibrant,
                    wavelength=calibrant.wavelength,
                    #matplotlib.cm.ColormapRegistry.get_cmap
                    detector=detegth,matplotlib.cm.ColormapRegistry.get_cmapctor)
[17]:
print(calib.geoRef)
f2d = calib.geoRef.getFit2D()
f2d["tilt"] = 0
calib.geoRef.setFit2D(**f2d)
print(calib.geoRef)
calib.fixed+=["rot1", "rot2"]
print(f"Fixed parameters: {calib.fixed}")
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.378425e+00 m   PONI= -2.184395e-01, -5.781937e-01 m    rot1=-0.109975  rot2=0.059663  rot3=0.000000 rad
DirectBeamDist= 6428.631 mm     Center: x=733.227, y=958.644 pix        Tilt= 7.165° tiltPlanRotation= 28.558° 𝛌= 0.165Å
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.428631e+00 m   PONI= 1.648867e-01, 1.261150e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6428.631 mm     Center: x=733.227, y=958.644 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
Fixed parameters: ['wavelength', 'rot3', 'rot1', 'rot2']
[18]:
logger = pyFAI.gui.cli_calibration.logger
from silx.image import marchingsquares
def extract_cpt(self, method="massif", pts_per_deg=1.0, max_rings=numpy.iinfo(int).max):
        """
        Performs an automatic keypoint extraction:
        Can be used in recalib or in calib after a first calibration has been performed.

        :param method: method for keypoint extraction
        :param pts_per_deg: number of control points per azimuthal degree (increase for better precision)
        :param max_rings: extract at most max_rings
        """

        logger.info("in extract_cpt with method %s", method)
        assert self.ai
        assert self.calibrant
        assert self.peakPicker
        self.peakPicker.reset()
        self.peakPicker.init(method, False)
        if self.geoRef:
            self.ai.setPyFAI(**self.geoRef.getPyFAI())
        tth = numpy.array([i for i in self.calibrant.get_2th() if i is not None])
        tth = numpy.unique(tth)
        tth_min = numpy.zeros_like(tth)
        tth_max = numpy.zeros_like(tth)
        delta = (tth[1:] - tth[:-1]) / 4.0
        tth_max[:-1] = delta
        tth_max[-1] = delta[-1]
        tth_min[1:] = -delta
        tth_min[0] = -delta[0]
        tth_max += tth
        tth_min += tth

        if self.geoRef:
            ttha = self.geoRef.get_ttha()
            chia = self.geoRef.get_chia()
            if (ttha is None) or (ttha.shape != self.peakPicker.data.shape):
                ttha = self.geoRef.twoThetaArray(self.peakPicker.data.shape)
            if (chia is None) or (chia.shape != self.peakPicker.data.shape):
                chia = self.geoRef.chiArray(self.peakPicker.data.shape)
        else:
            ttha = self.ai.twoThetaArray(self.peakPicker.data.shape)
            chia = self.ai.chiArray(self.peakPicker.data.shape)
        rings = 0
        self.peakPicker.sync_init()
        if self.max_rings is None:
            self.max_rings = tth.size

        ms = marchingsquares.MarchingSquaresMergeImpl(ttha, self.mask, use_minmax_cache=True)
        for i in range(tth.size):
            if rings >= min(self.max_rings, max_rings):
                break
            mask = numpy.logical_and(ttha >= tth_min[i], ttha < tth_max[i])
            if self.mask is not None:
                mask = numpy.logical_and(mask, numpy.logical_not(self.mask))

            size = mask.sum(dtype=int)
            if (size > 0):
                rings += 1
                self.peakPicker.massif_contour(mask)
                # if self.gui:
                #     self.peakPicker.widget.update()
                sub_data = self.peakPicker.data.ravel()[numpy.where(mask.ravel())]
                mean = sub_data.mean(dtype=numpy.float64)
                std = sub_data.std(dtype=numpy.float64)
                upper_limit = mean + std
                mask2 = numpy.logical_and(self.peakPicker.data > upper_limit, mask)
                size2 = mask2.sum(dtype=int)
                if size2 < 1000:
                    upper_limit = mean
                    mask2 = numpy.logical_and(self.peakPicker.data > upper_limit, mask)
                    size2 = mask2.sum()
                # length of the arc:
                points = ms.find_pixels(tth[i])
                seeds = set((i[0], i[1]) for i in points if mask2[i[0], i[1]])
                # max number of points: 360 points for a full circle
                azimuthal = chia[points[:, 0].clip(0, self.peakPicker.data.shape[0]), points[:, 1].clip(0, self.peakPicker.data.shape[1])]
                nb_deg_azim = numpy.unique(numpy.rad2deg(azimuthal).round()).size
                keep = int(nb_deg_azim * pts_per_deg)
                if keep == 0:
                    continue
                dist_min = len(seeds) / 2.0 / keep
                # why 3.0, why not ?

                logger.info("Extracting datapoint for ring %s (2theta = %.2f deg); "
                            "searching for %i pts out of %i with I>%.1f, dmin=%.1f" %
                            (i, numpy.degrees(tth[i]), keep, size2, upper_limit, dist_min))
                _res = self.peakPicker.peaks_from_area(mask=mask2, Imin=upper_limit, keep=keep, method=method, ring=i, dmin=dist_min, seed=seeds)

        if self.basename:
            self.peakPicker.points.save(self.basename + ".npt")
        if self.weighted:
            self.data = self.peakPicker.points.getWeightedList(self.peakPicker.data)
        else:
            self.data = self.peakPicker.points.getList()
        if self.geoRef:
            self.geoRef.data = numpy.array(self.data, dtype=numpy.float64)
Calibration.extract_cpt = extract_cpt
[19]:
calib.extract_cpt(max_rings=4)
[20]:
calib.refine()
Before refinement, the geometry is:
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.428631e+00 m   PONI= 1.648867e-01, 1.261150e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6428.631 mm     Center: x=733.227, y=958.644 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.429782e+00 m   PONI= 1.643007e-01, 1.263860e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6429.782 mm     Center: x=734.802, y=955.237 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.429782e+00 m   PONI= 1.643007e-01, 1.263860e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6429.782 mm     Center: x=734.802, y=955.237 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
[21]:
ai = pyFAI.load(calib.geoRef)
it = ai.integrate1d(center.scattering_data, npt, polarization_factor=polarization, error_model="no", method=("no", "csr", "opencl"))
sc = ai.sigma_clip(center.scattering_data, npt, polarization_factor=polarization, error_model="azimuthal", method=("no", "csr", "opencl"),
                  thres=0, max_iter=3)
md = ai.medfilt1d(center.scattering_data, npt, polarization_factor=polarization, method=("full", "csr", "opencl"))
[22]:
ax = jupyter.plot1d(it, label="integrate")
ax.errorbar(*sc, alpha=0.8, label="sigma-clip")
ax.plot(*md, alpha=0.8, label="median")
ax.legend()
[22]:
<matplotlib.legend.Legend at 0x7f20f5232790>
[23]:
# Approximate polarization correction needed:
ai.guess_polarization(center.scattering_data, unit='q_nm^-1', target_rad=10)
[23]:
0.9990997531534169
[24]:
# median filter provides the smoothest curve achievable
rebuilt = ai.calcfrom1d(md.radial,
                        md.intensity,
                        detector.shape,
                        dim1_unit=pyFAI.units.Q_NM,
                        polarization_factor=polarization)
flat = rebuilt/center.scattering_data
flat[numpy.where(detector.mask)] = numpy.nan
flat[center.scattering_data<=0] = numpy.nan
jupyter.display(flat)
/tmp/ipykernel_278476/3413793014.py:7: RuntimeWarning: divide by zero encountered in divide
  flat = rebuilt/center.scattering_data
[24]:
<Axes: >

Calculate the approximate correction of the other positions

[25]:
dx,dy,dz = numpy.array(data[1].coordinates)-center.coordinates
ai1 = copy.copy(ai)
ai1.poni1 += dz*0.001
ai1.poni2 += dy*0.001
ai1
[25]:
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.429782e+00 m   PONI= 2.643007e-01, 2.051260e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6429.782 mm     Center: x=1192.593, y=1536.632 pix      Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
[26]:
AbstractCalibration.extract_cpt = extract_cpt
[27]:
calib1 = AbstractCalibration(data[1].scattering_data, detector.mask, detector, wavelength=wavelength, calibrant=calibrant)
calib1.preprocess()
calib1.data = []
calib1.geoRef = calib1.initgeoRef()
calib1.geoRef.setPyFAI(**ai1.getPyFAI())
[27]:
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.429782e+00 m   PONI= 2.643007e-01, 2.051260e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6429.782 mm     Center: x=1192.593, y=1536.632 pix      Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
[28]:
calib1.extract_cpt(max_rings=4)
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
[29]:
calib1.fixed+=["rot1", "rot2"]
calib1.geoRef.refine3(fix=calib1.fixed)
[29]:
1.271497880994544e-07
[30]:
calib1.geoRef
[30]:
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.014144e+00 m   PONI= 2.627063e-01, 2.057110e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6014.144 mm     Center: x=1195.994, y=1527.362 pix      Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
[31]:
data[1].ai = pyFAI.load(calib1.geoRef)
data[1].control_points = calib1.peakPicker.points
data[5].ai = pyFAI.load(calib.geoRef)
data[5].control_points = calib.peakPicker.points

Perform the geometry extraction for each of the position:

[32]:
for idx in [2,3,4,6,7,8,9]:
    dx,dy,dz = numpy.array(data[idx].coordinates)-center.coordinates
    ain = copy.copy(ai)
    ain.poni1 += dz*0.001
    ain.poni2 += dy*0.001
    calibn = AbstractCalibration(data[idx].scattering_data, detector.mask, detector, wavelength=wavelength, calibrant=calibrant)
    calibn.preprocess()
    calibn.data = []
    calibn.geoRef = calib1.initgeoRef()
    calibn.geoRef.setPyFAI(**ain.getPyFAI())
    calibn.extract_cpt(max_rings=4)
    calibn.fixed+=["rot1", "rot2"]
    calibn.geoRef.refine3(fix=calibn.fixed)
    print(f"#### Position {idx} ####")
    print(calibn.geoRef)
    data[idx].ai = pyFAI.load(calibn.geoRef)
    data[idx].control_points = calibn.peakPicker.points
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 2 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.152240e+00 m   PONI= 2.641456e-01, 1.268375e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6152.240 mm     Center: x=737.428, y=1535.730 pix       Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 3 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.137090e+00 m   PONI= 2.637189e-01, 4.886695e-02 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6137.090 mm     Center: x=284.110, y=1533.249 pix       Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 4 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.062984e+00 m   PONI= 1.640642e-01, 4.816487e-02 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6062.984 mm     Center: x=280.028, y=953.862 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 6 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.096212e+00 m   PONI= 1.635525e-01, 2.058634e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6096.212 mm     Center: x=1196.880, y=950.887 pix       Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 7 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.437632e+00 m   PONI= 6.423896e-02, 2.052238e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6437.632 mm     Center: x=1193.162, y=373.482 pix       Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 8 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.439459e+00 m   PONI= 6.416683e-02, 1.264328e-01 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6439.459 mm     Center: x=735.074, y=373.063 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
ERROR:root:No diffraction image available => not showing the contour
#### Position 9 ####
Detector Pilatus CdTe 2M         PixelSize= 172µm, 172µm         BottomRight (3)
Wavelength= 1.653123e-11 m
SampleDetDist= 6.438818e+00 m   PONI= 6.416595e-02, 4.769705e-02 m      rot1=0.000000  rot2=0.000000  rot3=0.000000 rad
DirectBeamDist= 6438.818 mm     Center: x=277.308, y=373.058 pix        Tilt= 0.000° tiltPlanRotation= 0.000° 𝛌= 0.165Å
[33]:
#display scattering:
fig, ax = subplots(3,3, figsize=(12,12))
jupyter.display(data[1].calibration_data, ai=data[1].ai, cp=data[1].control_points, ax=ax[0,2])
jupyter.display(data[2].calibration_data, ai=data[2].ai, cp=data[2].control_points, ax=ax[0,1])
jupyter.display(data[3].calibration_data, ai=data[3].ai, cp=data[3].control_points, ax=ax[0,0])
jupyter.display(data[4].calibration_data, ai=data[4].ai, cp=data[4].control_points, ax=ax[1,0])
jupyter.display(data[5].calibration_data, ai=data[5].ai, cp=data[5].control_points, ax=ax[1,1])
jupyter.display(data[6].calibration_data, ai=data[6].ai, cp=data[6].control_points, ax=ax[1,2])
jupyter.display(data[7].calibration_data, ai=data[7].ai, cp=data[7].control_points, ax=ax[2,2])
jupyter.display(data[8].calibration_data, ai=data[8].ai, cp=data[8].control_points, ax=ax[2,1])
jupyter.display(data[9].calibration_data, ai=data[9].ai, cp=data[9].control_points, ax=ax[2,0])
pass

Extract the flatfield for all positions

[34]:
for p in data[1:]:
    md = p.ai.medfilt1d(p.scattering_data, npt, polarization_factor=polarization, method=("full", "csr", "opencl"))
    rebuilt = p.ai.calcfrom1d(md.radial, md.intensity, detector.shape, dim1_unit=pyFAI.units.Q_NM, polarization_factor=polarization)
    flat = rebuilt/p.scattering_data
    flat[numpy.where(detector.mask)] = numpy.nan
    flat[p.scattering_data<=0] = numpy.nan
    p.flat = flat
/tmp/ipykernel_278476/1978307742.py:4: RuntimeWarning: divide by zero encountered in divide
  flat = rebuilt/p.scattering_data
[35]:
#display flat:
fig, ax = subplots(3,3, figsize=(12,12))
jupyter.display(data[1].flat, ax=ax[0,2])
jupyter.display(data[2].flat, ax=ax[0,1])
jupyter.display(data[3].flat, ax=ax[0,0])
jupyter.display(data[4].flat, ax=ax[1,0])
jupyter.display(data[5].flat, ax=ax[1,1])
jupyter.display(data[6].flat, ax=ax[1,2])
jupyter.display(data[7].flat, ax=ax[2,2])
jupyter.display(data[8].flat, ax=ax[2,1])
jupyter.display(data[9].flat, ax=ax[2,0])
pass

The final Flatfield is the median of the flats calculated on the 9 positions

[36]:
flat_stack = numpy.array([p.flat for p in data[1:]])
flat = numpy.nanmedian(flat_stack, axis=0)
/tmp/ipykernel_278476/4120576390.py:2: RuntimeWarning: All-NaN slice encountered
  flat = numpy.nanmedian(flat_stack, axis=0)
[37]:
jupyter.display(flat)
[37]:
<Axes: >
[38]:
fabio.edfimage.EdfImage(data=flat.astype("float32")).write("flat.edf")
[39]:
numpy.nanmean(flat)
[39]:
1.001724953057434
[40]:
print(f"Total run time: {time.perf_counter()-t0:.3f}s.")
Total run time: 533.202s.
[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]:

[ ]: